This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372326 #29 Jun 09 2024 09:02:22 %S A372326 1,1,1,1,1,1,1,1,2,1,1,1,14,6,1,1,1,230,426,24,1,1,1,6902,122190, %T A372326 24024,120,1,1,1,329462,90768378,165392664,2170680,720,1,1,1,22934774, %U A372326 138779942046,4154515368024,457907248920,287250480,5040,1 %N A372326 Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals. %C A372326 The Turán graph T(k*n,n) is the complete n-partite graph K_{k,...,k}. %C A372326 An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1. %H A372326 Alois P. Heinz, <a href="/A372326/b372326.txt">Antidiagonals n = 0..42, flattened</a> %H A372326 Richard P. Stanley, <a href="http://dx.doi.org/10.1016/0012-365X(73)90108-8">Acyclic Orientations of Graphs</a>, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8 %H A372326 Wikipedia, <a href="https://en.wikipedia.org/wiki/Acyclic_orientation">Acyclic orientation</a> %H A372326 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multipartite_graph">Multipartite graph</a> %H A372326 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> %F A372326 A(n,k) = A267383(k*n,n). %e A372326 Square array A(n,k) begins: %e A372326 1, 1, 1, 1, 1, ... %e A372326 1, 1, 1, 1, 1, ... %e A372326 1, 2, 14, 230, 6902, ... %e A372326 1, 6, 426, 122190, 90768378, ... %e A372326 1, 24, 24024, 165392664, 4154515368024, ... %e A372326 1, 120, 2170680, 457907248920, 495810323060597880, ... %p A372326 g:= proc(n) option remember; `if`(n=0, 1, add( %p A372326 expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) %p A372326 end: %p A372326 A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0], %p A372326 proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)* %p A372326 (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j])) %p A372326 end; abs(b(0, nops(l))) %p A372326 end: %p A372326 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A372326 g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; %t A372326 A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0]; %t A372326 b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]* %t A372326 (q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m], %t A372326 {m, 0, l[[j]]}]]; %t A372326 Abs[b[0, Length[l]]]]; %t A372326 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Jun 09 2024, after _Alois P. Heinz_ *) %Y A372326 Columns k=0-2 give: A000012, A000142, A033815. %Y A372326 Rows n=0+1,2-3 give: A000012, A048163(k+1), A370961. %Y A372326 Main diagonal gives A372084. %Y A372326 Cf. A267383. %K A372326 nonn,tabl %O A372326 0,9 %A A372326 _Alois P. Heinz_, Apr 27 2024