cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372329 a(n) is the smallest multiple of n whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 128, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Crossrefs

Differs from A102631 at n = 8, 24, 27, 32, 40, 54, 56, 64, ... .

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n + 1, 2)); if(n + 1 == 2^e, n, 2^(e+1) - 1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e+1)) - 1).
a(n) = n * A372328(n).
a(n) = n if and only if n is in A036537.
a(n) <= n^2, with equality if and only if n = 1.

A372331 The number of infinitary divisors of the smallest number k such that k*n is a number whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Comments

First differs from A370077 and A370080 at n = 32.
The number of divisors d of n that are infinitarily relatively prime to n (see A064379), i.e., d have no common infinitary divisors with n.
Equivalently, the number of divisors d of n such that for each prime divisor p of d, bitand(v_p(n), v_p(d)) = 0, where v_p(k) is the highest power of p that divides k. Note that for infinitary divisors d of n (A077609), bitand(v_p(n), v_p(d)) = v_p(d).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2^(logint(x, 2) + 1 - hammingweight(x)), factor(n)[, 2]));

Formula

a(n) = A037445(A372328(n)).
Multiplicative with a(p^e) = 2^A023416(e) = A080100(e).
a(n) = 1 if and only if n is in A036537.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} A080100(k)/p^k) = 1.51209151045338102469... .

A372692 The sum of infinitary divisors of the smallest number k such that k*n is a number whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 15, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 15, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 15, 40, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 10 2024

Keywords

Comments

The sum of divisors d of n that are infinitarily relatively prime to n (see A064379), i.e., d have no common infinitary divisors with n.
The numbers of these divisors is A372331(n) and the largest of them is A372328(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], ?(# == 0 &)])); a[1] = 1; a[n] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) + 1); Array[a, 100]
  • PARI
    s(n) = apply(x -> 1 - x, binary(n));
    a(n) = {my(f = factor(n), k); prod(i = 1, #f~, k = s(f[i, 2]); prod(j = 1, #k, if(k[j], f[i, 1]^(2^(#k-j)) + 1, 1)));}

Formula

Multiplicative with a(p^e) = Product_{k >= 0, 2^k < e, bitand(e, 2^k) = 0} (p^(2^k) + 1).
a(n) >= 1, with equality if and only if n is in A036537.
a(n) <= n-1, with equality if and only if n = 2^(2^k) for k >= 0.
Showing 1-3 of 3 results.