This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372342 #30 Jun 25 2024 19:22:04 %S A372342 0,1,0,3,4,15,36,105,288,819,2320,6633,19020,54769,158172,458055, %T A372342 1329552,3867075,11267856,32884953,96111900,281267469,824083260, %U A372342 2417052267,7096175856,20852160525,61324675776,180488550375,531581605828,1566658748079,4620016882740,13632008884201,40244583972480 %N A372342 Number of noncrossing partitions of [n] that contain exactly one singleton. %C A372342 Similar to A005043 and linked to A363448. %H A372342 Julien Rouyer, <a href="/A372342/b372342.txt">Table of n, a(n) for n = 0..299</a> %H A372342 Julien Rouyer and A. Ninet, <a href="https://hal.science/hal-04281025">Two New Integer Sequences Related to Crossroads and Catalan Numbers</a>, hal-04281025, 2023. See also <a href="https://arxiv.org/abs/2311.07181">arXiv:2311.07181</a> [math.CO], 2023. %F A372342 a(n) = Sum_{m=1..floor((n+1)/2)} binomial(n, m-1)*binomial(n-m-1, m-2) for n != 1. %F A372342 a(n) = n*A005043(n-1) for n>=1. - _Ira M. Gessel_, Jun 25 2024 %e A372342 For n=3 the a(3)=3 partitions with exactly one singleton are {{12},{3}}, {{13},{2}}, and {{1},{23}}. %p A372342 a:= proc(n) option remember; `if`(n<2, n, %p A372342 2*(n-2)*a(n-1)/(n-1)+3*a(n-2)) %p A372342 end: %p A372342 seq(a(n), n=0..32); # _Alois P. Heinz_, Jun 25 2024 %t A372342 a[n_]:=Sum[Binomial[n, m-1]*Binomial[n-m-1, m-2], {m, Floor[(n+1)/2]}]; Array[a,30,0] (* _Stefano Spezia_, Apr 28 2024 *) %t A372342 a[n_] := (-1)^(1 - n) n Hypergeometric2F1[1 - n, 1/2, 2, 4]; %t A372342 Table[a[n], {n, 0, 32}] (* _Peter Luschny_, Jun 25 2024 *) %o A372342 (SageMath) %o A372342 seq = [0,1] %o A372342 for n in range(2,20): %o A372342 up = (n+1) // 2 %o A372342 s = 0 %o A372342 for m in range(1,up+1): %o A372342 s += binomial(n,m-1) * binomial(n-m-1,m-2) %o A372342 seq.append(s) %Y A372342 Cf. A005043, A363448. %K A372342 nonn,easy %O A372342 0,4 %A A372342 _Julien Rouyer_, Apr 28 2024