This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372355 #5 Apr 29 2024 09:07:11 %S A372355 4,8,5,16,8,6,32,16,12,3,64,32,24,5,2,128,64,48,12,7,3,256,128,96,23, %T A372355 13,8,7,512,256,192,44,28,15,12,1,1024,512,384,88,55,28,24,5,6,2048, %U A372355 1024,768,176,108,56,48,13,11,3,4096,2048,1536,352,216,112,96,23,20,7,8,8192,4096,3072,704,432,224,192,44,40,13,16,3 %N A372355 Array read by upward antidiagonals: A(n,k) = A372285(1+n, k)-A372285(n, k), n,k >= 1. %e A372355 Array begins: %e A372355 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A372355 ---+---------------------------------------------------------------------------- %e A372355 1 | 4, 5, 6, 3, 2, 3, 7, 1, 6, 3, 8, 3, %e A372355 2 | 8, 8, 12, 5, 7, 8, 12, 5, 11, 7, 16, 9, %e A372355 3 | 16, 16, 24, 12, 13, 15, 24, 13, 20, 13, 32, 15, %e A372355 4 | 32, 32, 48, 23, 28, 28, 48, 23, 40, 28, 64, 28, %e A372355 5 | 64, 64, 96, 44, 55, 56, 96, 44, 80, 55, 128, 56, %e A372355 6 | 128, 128, 192, 88, 108, 112, 192, 88, 160, 108, 256, 112, %e A372355 7 | 256, 256, 384, 176, 216, 224, 384, 176, 320, 216, 512, 224, %e A372355 8 | 512, 512, 768, 352, 432, 448, 768, 352, 640, 432, 1024, 448, %e A372355 9 | 1024, 1024, 1536, 704, 864, 896, 1536, 704, 1280, 864, 2048, 896, %e A372355 10 | 2048, 2048, 3072, 1408, 1728, 1792, 3072, 1408, 2560, 1728, 4096, 1792, %e A372355 11 | 4096, 4096, 6144, 2816, 3456, 3584, 6144, 2816, 5120, 3456, 8192, 3584, %e A372355 12 | 8192, 8192, 12288, 5632, 6912, 7168, 12288, 5632, 10240, 6912, 16384, 7168, %o A372355 (PARI) %o A372355 up_to = 78; %o A372355 A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893 %o A372355 A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); }; %o A372355 A372282sq(n,k) = if(1==n,2*k-1,A371094(A372282sq(n-1,k))); %o A372355 A372286(n) = { my(u=A371094(n), k1); for(i=1,oo,if(A086893(i)>=n,k1=i-1; break)); for(i=k1,oo,if(A086893(i)>u,return(i-k1-1))); }; %o A372355 A372355sq(n,k) = (A372286(A372282sq(1+n,k))-A372286(A372282sq(n,k))); %o A372355 A372355list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372355sq((a-(col-1)),col))); (v); }; %o A372355 v372355 = A372355list(up_to); %o A372355 A372355(n) = v372355[n]; %Y A372355 Columnwise first differences of A372285. %Y A372355 Cf. A086893, A372282, A372286. %Y A372355 Cf. also A372353. %K A372355 nonn,tabl %O A372355 1,1 %A A372355 _Antti Karttunen_, Apr 29 2024