cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372361 Array read by upward antidiagonals: A(n, k) = A372358(A372283(n, k)), n,k >= 1.

This page as a plain text file.
%I A372361 #5 May 03 2024 12:43:04
%S A372361 0,0,0,0,0,0,0,0,0,2,0,0,0,6,4,0,0,0,4,2,6,0,0,0,0,6,4,0,0,0,0,0,4,0,
%T A372361 0,2,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,22,0,6,0,0,0,0,0,0,0,0,0,8,0,0,0,
%U A372361 0,0,0,0,0,0,0,6,0,2,0,0,0,0,0,0,0,0,0,4,0,22,12,0,0,0,0,0,0,0,0,0,0,0,0,6,14
%N A372361 Array read by upward antidiagonals: A(n, k) = A372358(A372283(n, k)), n,k >= 1.
%e A372361 Array begins:
%e A372361 n\k| 1  2  3  4  5  6  7   8  9 10 11  12  13   14 15   16  17  18  19  20
%e A372361 ---+------------------------------------------------------------------------
%e A372361 1  | 0, 0, 0, 2, 4, 6, 0,  2, 4, 6, 0,  2, 12,  14, 8,  10, 20, 22, 16, 18,
%e A372361 2  | 0, 0, 0, 6, 2, 4, 0,  2, 0, 8, 0, 22,  6,  28, 6,  26, 12,  0,  2, 14,
%e A372361 3  | 0, 0, 0, 4, 6, 0, 0, 22, 0, 6, 0,  0,  8,  10, 4,  18,  6,  0,  6, 12,
%e A372361 4  | 0, 0, 0, 0, 4, 0, 0,  0, 0, 4, 0,  0,  6,  26, 0,  62,  8,  0,  4, 22,
%e A372361 5  | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  4,  18, 0, 116,  6,  0,  0, 48,
%e A372361 6  | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  62, 0,  44,  4,  0,  0,  6,
%e A372361 7  | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0, 116, 0,  14,  0,  0,  0,  8,
%e A372361 8  | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  44, 0,  92,  0,  0,  0,  6,
%e A372361 9  | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  14, 0,  50,  0,  0,  0,  4,
%e A372361 10 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  92, 0,  78,  0,  0,  0,  0,
%e A372361 11 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  50, 0,  60,  0,  0,  0,  0,
%e A372361 12 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  78, 0, 122,  0,  0,  0,  0,
%e A372361 13 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  60, 0,  82,  0,  0,  0,  0,
%e A372361 14 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0, 122, 0, 222,  0,  0,  0,  0,
%e A372361 15 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  82, 0, 260,  0,  0,  0,  0,
%e A372361 16 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0, 222, 0, 232,  0,  0,  0,  0,
%e A372361 17 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0, 260, 0, 114,  0,  0,  0,  0,
%e A372361 18 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0, 232, 0,  46,  0,  0,  0,  0,
%e A372361 19 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0, 114, 0,  44,  0,  0,  0,  0,
%e A372361 20 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  46, 0,  78,  0,  0,  0,  0,
%e A372361 21 | 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0,  0,  0,  44, 0, 252,  0,  0,  0,  0,
%o A372361 (PARI)
%o A372361 up_to = 105;
%o A372361 R(n) = { n = 1+3*n; n>>valuation(n, 2); };
%o A372361 A372283sq(n,k) = if(1==n,2*k-1,R(A372283sq(n-1,k)));
%o A372361 A000523(n) = logint(n,2);
%o A372361 A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893
%o A372361 A372358(n) = bitxor(A086893(1+A000523(n)),n);
%o A372361 A372361sq(n,k) = A372358(A372283sq(n,k));
%o A372361 A372361list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372361sq((a-(col-1)),col))); (v); };
%o A372361 v372361 = A372361list(up_to);
%o A372361 A372361(n) = v372361[n];
%Y A372361 Cf. A075677, A086893, A372283, A372358, A372360 (binary weights), A372446 (column 14).
%Y A372361 Cf. also A372359.
%K A372361 nonn,tabl
%O A372361 1,10
%A A372361 _Antti Karttunen_, May 01 2024