This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372361 #5 May 03 2024 12:43:04 %S A372361 0,0,0,0,0,0,0,0,0,2,0,0,0,6,4,0,0,0,4,2,6,0,0,0,0,6,4,0,0,0,0,0,4,0, %T A372361 0,2,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,22,0,6,0,0,0,0,0,0,0,0,0,8,0,0,0, %U A372361 0,0,0,0,0,0,0,6,0,2,0,0,0,0,0,0,0,0,0,4,0,22,12,0,0,0,0,0,0,0,0,0,0,0,0,6,14 %N A372361 Array read by upward antidiagonals: A(n, k) = A372358(A372283(n, k)), n,k >= 1. %e A372361 Array begins: %e A372361 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 %e A372361 ---+------------------------------------------------------------------------ %e A372361 1 | 0, 0, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 12, 14, 8, 10, 20, 22, 16, 18, %e A372361 2 | 0, 0, 0, 6, 2, 4, 0, 2, 0, 8, 0, 22, 6, 28, 6, 26, 12, 0, 2, 14, %e A372361 3 | 0, 0, 0, 4, 6, 0, 0, 22, 0, 6, 0, 0, 8, 10, 4, 18, 6, 0, 6, 12, %e A372361 4 | 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 6, 26, 0, 62, 8, 0, 4, 22, %e A372361 5 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 18, 0, 116, 6, 0, 0, 48, %e A372361 6 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 44, 4, 0, 0, 6, %e A372361 7 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 116, 0, 14, 0, 0, 0, 8, %e A372361 8 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 44, 0, 92, 0, 0, 0, 6, %e A372361 9 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 50, 0, 0, 0, 4, %e A372361 10 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 0, 78, 0, 0, 0, 0, %e A372361 11 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 60, 0, 0, 0, 0, %e A372361 12 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78, 0, 122, 0, 0, 0, 0, %e A372361 13 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 0, 82, 0, 0, 0, 0, %e A372361 14 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 122, 0, 222, 0, 0, 0, 0, %e A372361 15 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 82, 0, 260, 0, 0, 0, 0, %e A372361 16 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 222, 0, 232, 0, 0, 0, 0, %e A372361 17 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 260, 0, 114, 0, 0, 0, 0, %e A372361 18 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 232, 0, 46, 0, 0, 0, 0, %e A372361 19 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114, 0, 44, 0, 0, 0, 0, %e A372361 20 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 46, 0, 78, 0, 0, 0, 0, %e A372361 21 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 44, 0, 252, 0, 0, 0, 0, %o A372361 (PARI) %o A372361 up_to = 105; %o A372361 R(n) = { n = 1+3*n; n>>valuation(n, 2); }; %o A372361 A372283sq(n,k) = if(1==n,2*k-1,R(A372283sq(n-1,k))); %o A372361 A000523(n) = logint(n,2); %o A372361 A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893 %o A372361 A372358(n) = bitxor(A086893(1+A000523(n)),n); %o A372361 A372361sq(n,k) = A372358(A372283sq(n,k)); %o A372361 A372361list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372361sq((a-(col-1)),col))); (v); }; %o A372361 v372361 = A372361list(up_to); %o A372361 A372361(n) = v372361[n]; %Y A372361 Cf. A075677, A086893, A372283, A372358, A372360 (binary weights), A372446 (column 14). %Y A372361 Cf. also A372359. %K A372361 nonn,tabl %O A372361 1,10 %A A372361 _Antti Karttunen_, May 01 2024