A372379 The largest divisor of n whose number of divisors is a power of 2.
1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 8, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 8, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 24, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69, 70
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^(2^Floor[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2^exponent(f[i, 2]+1)-1));}
-
Python
from math import prod from sympy import factorint def A372379(n): return prod(p**((1<<(e+1).bit_length()-1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Apr 30 2024
Formula
Multiplicative with a(p^e) = p^(2^floor(log_2(e+1)) - 1).
a(n) = n if and only if n is in A036537.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 0.7907361848... = Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = 2^floor(log_2(k))-1 for k >= 1, and f(0) = 0.
Comments