This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372381 #13 Apr 30 2024 11:43:48 %S A372381 1,2,2,2,2,4,2,4,2,4,2,4,2,4,4,4,2,4,2,4,4,4,2,8,2,4,4,4,2,8,2,4,4,4, %T A372381 4,4,2,4,4,8,2,8,2,4,4,4,2,8,2,4,4,4,2,8,4,8,4,4,2,8,2,4,4,4,4,8,2,4, %U A372381 4,8,2,8,2,4,4,4,4,8,2,8,4,4,2,8,4,4,4 %N A372381 The number of divisors of the largest divisor of n whose number of divisors is a power of 2. %C A372381 First differs from A286324 at n = 32, and from A331109 at n = 64. %C A372381 Also, the number of infinitary divisors of the largest divisor of n whose number of divisors is a power of 2. %H A372381 Amiram Eldar, <a href="/A372381/b372381.txt">Table of n, a(n) for n = 1..10000</a> %F A372381 Multiplicative with a(p^e) = 2^floor(log_2(e+1)). %F A372381 a(n) = A000005(A372379(n)). %F A372381 a(n) = A037445(A372379(n)). %F A372381 a(n) = A000005(n) if and only if n is in A036537. %F A372381 a(n) <= A372380(n), with equality if and only if n is cubefree (A004709). %t A372381 f[p_, e_] := 2^Floor[Log2[e + 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A372381 (PARI) a(n) = vecprod(apply(x -> 2^exponent(x+1), factor(n)[, 2])); %o A372381 (Python) %o A372381 from math import prod %o A372381 from sympy import factorint %o A372381 def A372381(n): return prod(1<<(e+1).bit_length()-1 for e in factorint(n).values()) # _Chai Wah Wu_, Apr 30 2024 %Y A372381 Cf. A000005, A004709, A036537, A037445, A372379, A372380. %Y A372381 Cf. A286324, A331109. %K A372381 nonn,easy,mult %O A372381 1,2 %A A372381 _Amiram Eldar_, Apr 29 2024