This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372397 #35 Feb 02 2025 13:00:03 %S A372397 1,5,6,8,11,15,19,20,24,25,27,31,32,34,37,41,42,44,47,51,55,56,58,61, %T A372397 65,69,70,74,75,77,80,84,88,89,93,94,96,100,101,103,106,110,114,115, %U A372397 119,120,122,126,127,129,132,136,137,139,142,146,150,151,155,156 %N A372397 Numbers occurring exactly twice in Hofstadter G/H-like sequence H_4 (A005375). %C A372397 Also first prepending column of the 4-Zeckendorf array (see Ericksen and Anderson). %C A372397 _N. J. A. Sloane_ observed already the relation between Hofstadter G/H-like sequences H_k and k-Zeckendorf arrays in May 2003, at least for k = 3 (see formula section and history of A005374). First observation most probably by Diego Torres, Nov 2002, relating the Hofstadter G/H-like sequences H_k with the k-Zeckendorf arrays and Lamé sequences of order k (see comments in A005375 and A005376). %H A372397 A.H.M. Smeets, <a href="/A372397/b372397.txt">Table of n, a(n) for n = 1..20000</a> %H A372397 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, February 2012. %o A372397 (Python) %o A372397 def H(n,k): %o A372397 if n == 0: %o A372397 return 0 %o A372397 else: %o A372397 i, x = 0, n-1 %o A372397 while i < k: %o A372397 i, x = i+1, H(x,k) %o A372397 return n-x %o A372397 n, nn = 0, 0 %o A372397 while n < 50: %o A372397 if nn == 0: %o A372397 Hno = H(nn,4) %o A372397 else: %o A372397 Hnn = H(nn,4) %o A372397 if Hnn == Hno: %o A372397 n += 1 %o A372397 print(Hnn, end = ", ") %o A372397 Hno = Hnn %o A372397 nn += 1 %Y A372397 Cf. A005374, A005375. %Y A372397 Numbers occurring exactly twice in Hofstadter G/H like sequence H_k: A000291 (k=2), A005374 (k=3), this sequence (k=4), A372398 (k=5). %K A372397 nonn %O A372397 1,2 %A A372397 _A.H.M. Smeets_, Apr 29 2024