This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372398 #25 Jan 05 2025 19:51:42 %S A372398 1,6,7,9,12,16,21,26,27,32,33,35,40,41,43,46,51,52,54,57,61,66,67,69, %T A372398 72,76,81,86,87,89,92,96,101,106,107,112,113,115,118,122,127,132,133, %U A372398 138,139,141,146,147,149,152,156,161,166,167,172,173,175,180,181 %N A372398 Numbers occurring exactly twice in Hofstadter G/H-like sequence H_5 (A005376). %C A372398 Also first prepending column of the 5-Zeckendorf array (see Ericksen and Anderson). %C A372398 _N. J. A. Sloane_ observed already the relation between Hofstadter G/H-like sequences H_k and k-Zeckendorf arrays in May 2003, at least for k = 3 (see formula section and history of A005374). First observation most probably by Diego Torres, Nov 2002, relating the Hofstadter G/H-like sequences H_k with the k-Zeckendorf arrays and Lamé sequences of order k (see comments in A005375 and A005376). %H A372398 A.H.M. Smeets, <a href="/A372398/b372398.txt">Table of n, a(n) for n = 1..20000</a> %H A372398 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, February 2012. %o A372398 (Python) %o A372398 def H(n,k): %o A372398 if n == 0: %o A372398 return 0 %o A372398 else: %o A372398 i, x = 0, n-1 %o A372398 while i < k: %o A372398 i, x = i+1, H(x,k) %o A372398 return n-x %o A372398 n, nn = 0, 0 %o A372398 while n < 59: %o A372398 if nn == 0: %o A372398 Hno = H(nn,5) %o A372398 else: %o A372398 Hnn = H(nn,5) %o A372398 if Hnn == Hno: %o A372398 n += 1 %o A372398 print(Hnn, end = ", ") %o A372398 Hno = Hnn %o A372398 nn += 1 %Y A372398 Cf. A005374, A005376. %Y A372398 Numbers occurring exactly twice in Hofstadter G/H like sequence H_k: A000291 (k=2), A005374 (k=3), A372397 (k=4), this sequence (k=5). %K A372398 nonn %O A372398 1,2 %A A372398 _A.H.M. Smeets_, Apr 29 2024