This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372399 #11 Mar 29 2025 23:58:15 %S A372399 2,4,6,8,9,10,14,19,21,23,25,32,34,35,36,37,38,39,45,47,48,52,54,56, %T A372399 57,61,65,74,75,76,77,81,82,83,84,85,86,87,88,89,90,91,94,96,97,99, %U A372399 100,106,108,110,113,114,122,123,130,136,142,153,157,158,159,170,171 %N A372399 Numbers k such that A124652(k) does not divide A372111(k-1). %C A372399 Let b(x) = A124652(x) and let s(x) = A372111(x), where A372111 contains partial sums of A124652. %C A372399 For n > 2, 1 < gcd(b(a(n)), s(a(n)-1)) < b(a(n)). %C A372399 For n > 2, both b(a(n)) and s(a(n)-1) are necessarily composite, since prime p either divides or is coprime to n. Furthermore, both b(a(n)) and s(a(n)-1) have at least 2 distinct prime factors. %C A372399 Indices of records in A124652 except {1, 2, 3, 5} are in this sequence. %H A372399 Michael De Vlieger, <a href="/A372399/b372399.txt">Table of n, a(n) for n = 1..10000</a> %H A372399 Michael De Vlieger, <a href="/A372399/a372399.png">Log log scatterplot of A124652(n)</a>, n = 1..10^5, showing A124652(a(n)) in red. %F A372399 A124652(a(n)) is a number in row A372111(a(n)-1) of A272618. %e A372399 a(1) = 2 since b(2) = 2 does not divide s(1) = 1. %e A372399 a(2) = 4 since b(4) = 4 does not divide s(3) = 6. %e A372399 a(3) = 6 since b(6) = 9 does not divide s(5) = 15. %e A372399 a(4) = 8 since b(8) = 8 does not divide s(7) = 30. %e A372399 a(5) = 9 since b(9) = 16 does not divide s(8) = 38, etc. %e A372399 Table of b(k) and s(k-1), where k = a(n), n = 2..12. Asterisked k denote terms such that rad(b(k)) | rad(s(k-1)); k = 73 and k = 4316 are the only other known indices where the terms have this quality. %e A372399 k b(k) s(k-1) %e A372399 ---------------------------------------------------------- %e A372399 4 4 = 2^2 6 = 2 * 3 %e A372399 6 9 = 3^2 15 = 3 * 5 %e A372399 8 8 = 2^3 30 = 2 * 3 * 5 %e A372399 9 16 = 2^4 38 = 2 * 19 %e A372399 10* 12 = 2^2 * 3 54 = 2 * 3^3 %e A372399 14* 28 = 2^2 * 7 98 = 2 * 7^2 %e A372399 19 32 = 2^5 216 = 2^3 * 3^3 %e A372399 21 81 = 3^4 279 = 3^2 * 31 %e A372399 23 20 = 2^2 * 5 370 = 2 * 5 * 37 %e A372399 25 169 = 13^2 403 = 13 * 31 %e A372399 32 49 = 7^2 728 = 2^3 * 7 * 13 %e A372399 ... %e A372399 73* 100 = 2^2 * 5^2 4800 = 2^6 * 3 * 5^2 %e A372399 ... %e A372399 4316* 4720 = 2^4 * 5 * 59 30806850 = 2 * 3 * 5^2 * 59^3 %t A372399 nn = 120; c[_] := False; %t A372399 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; %t A372399 f[x_] := Select[Range[x], Divisible[x, rad[#]] &]; %t A372399 Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2]; %t A372399 {2}~Join~Reap[Do[ %t A372399 r = f[s]; k = SelectFirst[r, ! c[#] &]; %t A372399 If[! Divisible[s, k], Sow[i]]; %t A372399 c[k] = True; %t A372399 s += k, {i, 3, nn}] ][[-1, 1]] %Y A372399 Cf. A007947, A124652, A272618, A372111. %K A372399 nonn %O A372399 1,1 %A A372399 _Michael De Vlieger_, May 05 2024