This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372401 #21 Sep 23 2024 04:00:49 %S A372401 1,68,547,2119,5817,13008,25412,45078,74409,116147,173379,249532, %T A372401 348375,474018,630922,823885,1058051,1338898,1672260,2064302,2521535, %U A372401 3050825,3659361,4354687,5144682,6037582,7041946,8166692,9421074,10814695,12357491,14059744,15932086,17985473 %N A372401 Position of 210^n among 7-smooth numbers A002473. %C A372401 Also position of 210^(n+1) in A147571. %F A372401 a(n) ~ c * n^4, where c = log(210)^4/(24*log(2)*log(3)*log(5)*log(7)) = 14.282278766622... - _Vaclav Kotesovec_ and _Amiram Eldar_, Sep 22 2024 %t A372401 Table[ %t A372401 Sum[Floor@ Log[7, 210^n/(2^i*3^j*5^k)] + 1, %t A372401 {i, 0, Log[2, 210^n]}, %t A372401 {j, 0, Log[3, 210^n/2^i]}, %t A372401 {k, 0, Log[5, 210^n/(2^i*3^j)]}], %t A372401 {n, 0, 12}] %o A372401 (Python) %o A372401 import heapq %o A372401 from itertools import islice %o A372401 from sympy import primerange %o A372401 def A372401gen(p=7): # generator for p-smooth terms %o A372401 v, oldv, psmooth_primes, = 1, 0, list(primerange(1, p+1)) %o A372401 h = [(1, [0]*len(psmooth_primes))] %o A372401 idx = {psmooth_primes[i]:i for i in range(len(psmooth_primes))} %o A372401 loc = 0 %o A372401 while True: %o A372401 v, e = heapq.heappop(h) %o A372401 if v != oldv: %o A372401 loc += 1 %o A372401 if len(set(e)) == 1: %o A372401 yield loc %o A372401 oldv = v %o A372401 for p in psmooth_primes: %o A372401 vp, ep = v*p, e[:] %o A372401 ep[idx[p]] += 1 %o A372401 heapq.heappush(h, (v*p, ep)) %o A372401 print(list(islice(A372401gen(), 15))) # _Michael S. Branicky_, Jun 05 2024 %o A372401 (Python) %o A372401 from sympy import integer_log %o A372401 def A372401(n): %o A372401 c, x = 0, 210**n %o A372401 for i in range(integer_log(x,7)[0]+1): %o A372401 for j in range(integer_log(m:=x//7**i,5)[0]+1): %o A372401 for k in range(integer_log(r:=m//5**j,3)[0]+1): %o A372401 c += (r//3**k).bit_length() %o A372401 return c # _Chai Wah Wu_, Sep 16 2024 %Y A372401 Cf. A002110, A002473, A022330, A147571, A202821, A372400, A372402. %K A372401 nonn %O A372401 0,2 %A A372401 _Michael De Vlieger_, Jun 03 2024