This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372402 #33 Sep 18 2024 23:03:15 %S A372402 1,283,3847,20996,74228,203084,469053,960396,1797086,3135610,5173909, %T A372402 8156188,12377846,18190320,26005929,36302854,49629820,66611231, %U A372402 87951744,114441450,146960432,186483973,234087084,290949702,358361266,437725888,530566933,638532124,763398291,907076258 %N A372402 Position of 2310^n among 11-smooth numbers A051038. %C A372402 Also position of 2310^(n+1) in A147572. %t A372402 Table[ %t A372402 Sum[Floor@ Log[11, 2310^n/(2^i*3^j*5^k*7^m)] + 1, %t A372402 {i, 0, Log[2, 2310^n]}, %t A372402 {j, 0, Log[3, 2310^n/2^i]}, %t A372402 {k, 0, Log[5, 2310^n/(2^i*3^j)]}, %t A372402 {m, 0, Log[7, 2310^n/(2^i*3^j*5^k)]}], %t A372402 {n, 0, 8}] %o A372402 (Python) # uses imports/function in A372401 %o A372402 print(list(islice(A372401gen(p=11), 7))) # _Michael S. Branicky_, Jun 05 2024 %o A372402 (Python) %o A372402 from sympy import integer_log, prevprime %o A372402 def A372402(n): %o A372402 def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) %o A372402 return g(2310**n,11) # _Chai Wah Wu_, Sep 16 2024 %Y A372402 Cf. A022330, A051038, A147572, A372400, A372401. %K A372402 nonn %O A372402 0,2 %A A372402 _Michael De Vlieger_, Jun 03 2024 %E A372402 a(14)-a(18) from _Michael S. Branicky_, Jun 05 2024 %E A372402 More terms from _David A. Corneth_, Jun 05 2024