This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372406 #18 May 30 2024 06:53:22 %S A372406 1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,3,4,4,4,4, %T A372406 3,4,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, %U A372406 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 %N A372406 a(n) is the size of the largest set of positive integers S from 1..prime(n)-1 such that for any subset R of S, Sum {R} + prime(n) is prime. %C A372406 This sequence is not monotonically increasing. %e A372406 Let n=5, so p=prime(5)=11. From A070046, there are 3 positive integers x such that 1 <= x < 11 and 11+x is prime, which are {2, 6, 8}, so a(5) <= 3. Next, we see that 11 + 2 + 6 + 8 = 27 which is not prime so a(5) < 3. Last, we see that 11 + 2 + 6 = 19 is prime, and we already checked that 11 + 2 and 11 + 6 were prime, so S = {2, 6} and a(5) = 2. %e A372406 11 is the first n such that a(n) = 3. Here, prime(11) = 31, and there are multiple sets which work. One is S = {6, 22, 30}. %e A372406 31 + {} = 31 (empty set subset of S), %e A372406 31 + 6 = 37, %e A372406 31 + 22 = 53, %e A372406 31 + 30 = 61, %e A372406 31 + 6 + 22 = 59, %e A372406 31 + 6 + 30 = 67, %e A372406 31 + 22 + 30 = 83, %e A372406 31 + 6 + 22 + 30 = 89, all of which are prime. %e A372406 28 is the first n such that a(n) = 4. Here, prime(28) = 107, and there are multiple sets which work. One is S = {2, 30, 42, 90}. %p A372406 f:= proc(n) %p A372406 local k,p,C,S,s,t,q; %p A372406 p:= ithprime(n); %p A372406 C:= select(isprime,[$p+1 .. 2*p-1]) -~ p; %p A372406 S[1]:= map(t -> [{t},{0,t}],C); %p A372406 for k from 2 do %p A372406 S[k]:= NULL; %p A372406 for s in S[k-1] do %p A372406 for t in select(`>`,C,max(s[1])) do %p A372406 q:= s[2] +~ t; %p A372406 if andmap(isprime, q +~ p) then %p A372406 S[k]:= S[k], [s[1] union {t}, s[2] union q] ; %p A372406 fi %p A372406 od od; %p A372406 S[k]:= {S[k]}; %p A372406 if S[k] = {} then return k-1 fi %p A372406 od %p A372406 end proc: %p A372406 map(f, [$1..90]); # _Robert Israel_, May 06 2024 %t A372406 nmax = 87; a372406 = {{1, 1}}; %t A372406 For[n = 2, n <= nmax, n++, d = {}; p = Prime[n]; %t A372406 For[a = 2, a < p, a += 2, If[PrimeQ[p + a], AppendTo[d, a]]]; q = 1; k = 0; %t A372406 While[q == 1 && k <= Length[d], k++; su = Subsets[d, {k}]; %t A372406 For[i = 1, i <= Length[su], i++, s = su[[i]]; %t A372406 If[PrimeQ[Total[s] + p], y = Subsets[s]; t = 1; %t A372406 For[z = 1, z <= Length[y], z++, %t A372406 If[CompositeQ[Total[y[[z]]] + p], t = 0; q = 0; Break[]]]; %t A372406 If[t == 1, q = 1; Break[]], q = 0]]]; %t A372406 AppendTo[a372406, {n, k - 1}]] %t A372406 Print[a372406] %Y A372406 Cf. A070046. %K A372406 nonn %O A372406 1,4 %A A372406 _Samuel Harkness_, Apr 29 2024