This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372411 #11 Apr 30 2024 06:06:03 %S A372411 1,1,7,34,183,1001,5578,31459,179063,1026493,5918007,34277728, %T A372411 199309146,1162682314,6801575641,39885002534,234384591991, %U A372411 1379936226605,8137835460115,48062073927739,284233390132183,1682950066882489,9975692904121556,59190095764321975 %N A372411 Coefficient of x^n in the expansion of ( (1-x+x^2)^2 / (1-x)^3 )^n. %F A372411 a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(2*n-k-1,n-2*k). %F A372411 The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^2)^2 ). See A369229. %o A372411 (PARI) a(n, s=2, t=2, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k)); %Y A372411 Cf. A092765, A369229. %K A372411 nonn %O A372411 0,3 %A A372411 _Seiichi Manyama_, Apr 29 2024