cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372427 Numbers whose binary indices and prime indices have the same sum.

This page as a plain text file.
%I A372427 #18 May 23 2024 00:49:29
%S A372427 19,33,34,69,74,82,130,133,305,412,428,436,533,721,755,808,917,978,
%T A372427 1036,1058,1062,1121,1133,1143,1341,1356,1630,1639,1784,1807,1837,
%U A372427 1990,2057,2115,2130,2133,2163,2260,2324,2328,2354,2358,2512,2534,2627,2771,2825
%N A372427 Numbers whose binary indices and prime indices have the same sum.
%C A372427 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372427 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A372427 John Tyler Rascoe, <a href="/A372427/b372427.txt">Table of n, a(n) for n = 1..10000</a>
%e A372427 The binary indices of 130 are {2,8}, and the prime indices are {1,3,6}. Both sum to 10, so 130 is in the sequence.
%e A372427 The terms together with their prime indices begin:
%e A372427    19: {8}
%e A372427    33: {2,5}
%e A372427    34: {1,7}
%e A372427    69: {2,9}
%e A372427    74: {1,12}
%e A372427    82: {1,13}
%e A372427   130: {1,3,6}
%e A372427   133: {4,8}
%e A372427   305: {3,18}
%e A372427   412: {1,1,27}
%e A372427   428: {1,1,28}
%e A372427 The terms together with their binary expansions and binary indices begin:
%e A372427    19:      10011 ~ {1,2,5}
%e A372427    33:     100001 ~ {1,6}
%e A372427    34:     100010 ~ {2,6}
%e A372427    69:    1000101 ~ {1,3,7}
%e A372427    74:    1001010 ~ {2,4,7}
%e A372427    82:    1010010 ~ {2,5,7}
%e A372427   130:   10000010 ~ {2,8}
%e A372427   133:   10000101 ~ {1,3,8}
%e A372427   305:  100110001 ~ {1,5,6,9}
%e A372427   412:  110011100 ~ {3,4,5,8,9}
%e A372427   428:  110101100 ~ {3,4,6,8,9}
%t A372427 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A372427 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A372427 Select[Range[100],Total[prix[#]]==Total[bix[#]]&]
%Y A372427 For length instead of sum we get A071814.
%Y A372427 Positions of zeros in A372428.
%Y A372427 For maximum instead of sum we have A372436.
%Y A372427 A003963 gives product of prime indices.
%Y A372427 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372427 A029837 gives greatest binary index, least A001511.
%Y A372427 A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
%Y A372427 A061395 gives greatest prime index, least A055396.
%Y A372427 A070939 gives length of binary expansion.
%Y A372427 A096111 gives product of binary indices.
%Y A372427 A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
%Y A372427 A326031 gives weight of the set-system with BII-number n.
%Y A372427 Cf. A000720, A001221, A014499, A030101, A066099, A304818, A318283, A355536, A359401, A359402, A372429-A372433, A372441.
%K A372427 nonn,base
%O A372427 1,1
%A A372427 _Gus Wiseman_, May 01 2024