This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372427 #18 May 23 2024 00:49:29 %S A372427 19,33,34,69,74,82,130,133,305,412,428,436,533,721,755,808,917,978, %T A372427 1036,1058,1062,1121,1133,1143,1341,1356,1630,1639,1784,1807,1837, %U A372427 1990,2057,2115,2130,2133,2163,2260,2324,2328,2354,2358,2512,2534,2627,2771,2825 %N A372427 Numbers whose binary indices and prime indices have the same sum. %C A372427 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372427 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A372427 John Tyler Rascoe, <a href="/A372427/b372427.txt">Table of n, a(n) for n = 1..10000</a> %e A372427 The binary indices of 130 are {2,8}, and the prime indices are {1,3,6}. Both sum to 10, so 130 is in the sequence. %e A372427 The terms together with their prime indices begin: %e A372427 19: {8} %e A372427 33: {2,5} %e A372427 34: {1,7} %e A372427 69: {2,9} %e A372427 74: {1,12} %e A372427 82: {1,13} %e A372427 130: {1,3,6} %e A372427 133: {4,8} %e A372427 305: {3,18} %e A372427 412: {1,1,27} %e A372427 428: {1,1,28} %e A372427 The terms together with their binary expansions and binary indices begin: %e A372427 19: 10011 ~ {1,2,5} %e A372427 33: 100001 ~ {1,6} %e A372427 34: 100010 ~ {2,6} %e A372427 69: 1000101 ~ {1,3,7} %e A372427 74: 1001010 ~ {2,4,7} %e A372427 82: 1010010 ~ {2,5,7} %e A372427 130: 10000010 ~ {2,8} %e A372427 133: 10000101 ~ {1,3,8} %e A372427 305: 100110001 ~ {1,5,6,9} %e A372427 412: 110011100 ~ {3,4,5,8,9} %e A372427 428: 110101100 ~ {3,4,6,8,9} %t A372427 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372427 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372427 Select[Range[100],Total[prix[#]]==Total[bix[#]]&] %Y A372427 For length instead of sum we get A071814. %Y A372427 Positions of zeros in A372428. %Y A372427 For maximum instead of sum we have A372436. %Y A372427 A003963 gives product of prime indices. %Y A372427 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372427 A029837 gives greatest binary index, least A001511. %Y A372427 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372427 A061395 gives greatest prime index, least A055396. %Y A372427 A070939 gives length of binary expansion. %Y A372427 A096111 gives product of binary indices. %Y A372427 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372427 A326031 gives weight of the set-system with BII-number n. %Y A372427 Cf. A000720, A001221, A014499, A030101, A066099, A304818, A318283, A355536, A359401, A359402, A372429-A372433, A372441. %K A372427 nonn,base %O A372427 1,1 %A A372427 _Gus Wiseman_, May 01 2024