This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372429 #16 May 22 2024 02:12:25 %S A372429 2,3,4,6,7,8,6,8,11,13,15,10,11,13,16,15,18,19,10,13,12,17,15,17,14, %T A372429 17,19,20,21,19,28,11,13,15,17,19,21,17,20,22,22,23,29,16,19,21,23,30, %U A372429 24,25,26,31,27,33,10,15,17,19,18,19,21,19,23,26,25,28,23 %N A372429 Sum of binary indices of prime(n). Sum of positions of ones in the reversed binary expansion of prime(n). %C A372429 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372429 Do 2, 3, 4, 7, 12, 14 appear just once? %C A372429 Are 1, 5, 9 missing? %C A372429 The above questions hold true up to n = 10^6. - _John Tyler Rascoe_, May 21 2024 %H A372429 John Tyler Rascoe, <a href="/A372429/b372429.txt">Table of n, a(n) for n = 1..9438</a> %F A372429 a(n) = A029931(prime(n)). %e A372429 The primes together with their binary expansions and binary indices begin: %e A372429 2: 10 ~ {2} %e A372429 3: 11 ~ {1,2} %e A372429 5: 101 ~ {1,3} %e A372429 7: 111 ~ {1,2,3} %e A372429 11: 1011 ~ {1,2,4} %e A372429 13: 1101 ~ {1,3,4} %e A372429 17: 10001 ~ {1,5} %e A372429 19: 10011 ~ {1,2,5} %e A372429 23: 10111 ~ {1,2,3,5} %e A372429 29: 11101 ~ {1,3,4,5} %e A372429 31: 11111 ~ {1,2,3,4,5} %e A372429 37: 100101 ~ {1,3,6} %e A372429 41: 101001 ~ {1,4,6} %e A372429 43: 101011 ~ {1,2,4,6} %e A372429 47: 101111 ~ {1,2,3,4,6} %e A372429 53: 110101 ~ {1,3,5,6} %e A372429 59: 111011 ~ {1,2,4,5,6} %e A372429 61: 111101 ~ {1,3,4,5,6} %e A372429 67: 1000011 ~ {1,2,7} %e A372429 71: 1000111 ~ {1,2,3,7} %e A372429 73: 1001001 ~ {1,4,7} %e A372429 79: 1001111 ~ {1,2,3,4,7} %t A372429 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372429 Table[Total[bix[Prime[n]]],{n,100}] %Y A372429 The number instead of sum of binary indices is A014499. %Y A372429 Restriction of A029931 (sum of binary indices) to the primes A000040. %Y A372429 The maximum instead of sum of binary indices is A035100, see also A023506. %Y A372429 Row-sums of A372471. %Y A372429 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372429 A029837 gives greatest binary index, least A001511. %Y A372429 A048793 lists binary indices, length A000120, reverse A272020. %Y A372429 A056239 adds up prime indices. %Y A372429 A070939 gives length of binary expansion. %Y A372429 A096111 gives product of binary indices. %Y A372429 A326031 gives weight of the set-system with BII-number n. %Y A372429 A372427 lists numbers whose binary and prime indices have the same sum. %Y A372429 Cf. A005940, A030101, A059893, A071814, A230877, A231204, A358134, A359359, A359401, A372430-A372437, A372441. %K A372429 nonn,base %O A372429 1,1 %A A372429 _Gus Wiseman_, May 02 2024