cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372429 Sum of binary indices of prime(n). Sum of positions of ones in the reversed binary expansion of prime(n).

This page as a plain text file.
%I A372429 #16 May 22 2024 02:12:25
%S A372429 2,3,4,6,7,8,6,8,11,13,15,10,11,13,16,15,18,19,10,13,12,17,15,17,14,
%T A372429 17,19,20,21,19,28,11,13,15,17,19,21,17,20,22,22,23,29,16,19,21,23,30,
%U A372429 24,25,26,31,27,33,10,15,17,19,18,19,21,19,23,26,25,28,23
%N A372429 Sum of binary indices of prime(n). Sum of positions of ones in the reversed binary expansion of prime(n).
%C A372429 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372429 Do 2, 3, 4, 7, 12, 14 appear just once?
%C A372429 Are 1, 5, 9 missing?
%C A372429 The above questions hold true up to n = 10^6. - _John Tyler Rascoe_, May 21 2024
%H A372429 John Tyler Rascoe, <a href="/A372429/b372429.txt">Table of n, a(n) for n = 1..9438</a>
%F A372429 a(n) = A029931(prime(n)).
%e A372429 The primes together with their binary expansions and binary indices begin:
%e A372429    2:      10 ~ {2}
%e A372429    3:      11 ~ {1,2}
%e A372429    5:     101 ~ {1,3}
%e A372429    7:     111 ~ {1,2,3}
%e A372429   11:    1011 ~ {1,2,4}
%e A372429   13:    1101 ~ {1,3,4}
%e A372429   17:   10001 ~ {1,5}
%e A372429   19:   10011 ~ {1,2,5}
%e A372429   23:   10111 ~ {1,2,3,5}
%e A372429   29:   11101 ~ {1,3,4,5}
%e A372429   31:   11111 ~ {1,2,3,4,5}
%e A372429   37:  100101 ~ {1,3,6}
%e A372429   41:  101001 ~ {1,4,6}
%e A372429   43:  101011 ~ {1,2,4,6}
%e A372429   47:  101111 ~ {1,2,3,4,6}
%e A372429   53:  110101 ~ {1,3,5,6}
%e A372429   59:  111011 ~ {1,2,4,5,6}
%e A372429   61:  111101 ~ {1,3,4,5,6}
%e A372429   67: 1000011 ~ {1,2,7}
%e A372429   71: 1000111 ~ {1,2,3,7}
%e A372429   73: 1001001 ~ {1,4,7}
%e A372429   79: 1001111 ~ {1,2,3,4,7}
%t A372429 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A372429 Table[Total[bix[Prime[n]]],{n,100}]
%Y A372429 The number instead of sum of binary indices is A014499.
%Y A372429 Restriction of A029931 (sum of binary indices) to the primes A000040.
%Y A372429 The maximum instead of sum of binary indices is A035100, see also A023506.
%Y A372429 Row-sums of A372471.
%Y A372429 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372429 A029837 gives greatest binary index, least A001511.
%Y A372429 A048793 lists binary indices, length A000120, reverse A272020.
%Y A372429 A056239 adds up prime indices.
%Y A372429 A070939 gives length of binary expansion.
%Y A372429 A096111 gives product of binary indices.
%Y A372429 A326031 gives weight of the set-system with BII-number n.
%Y A372429 A372427 lists numbers whose binary and prime indices have the same sum.
%Y A372429 Cf. A005940, A030101, A059893, A071814, A230877, A231204, A358134, A359359, A359401, A372430-A372437, A372441.
%K A372429 nonn,base
%O A372429 1,1
%A A372429 _Gus Wiseman_, May 02 2024