This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372430 #6 May 05 2024 08:55:26 %S A372430 1,3,5,15,27,39,55,63,85,121,125,135,169,171,175,209,243,247,255,299, %T A372430 375,399,437,459,507,539,605,637,725,735,783,841,867,891,1085,1215, %U A372430 1323,1331,1375,1519,1767,1815,1863,2079,2125,2187,2223,2295,2299,2331,2405 %N A372430 Positive integers k such that the distinct prime indices of k are a subset of the binary indices of k. %C A372430 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372430 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372430 Conjecture: The only number whose binary indices are a subset of its prime indices is 4100, with binary indices {3,13} and prime indices {1,1,3,3,13}. Verified up to 10,000,000. %F A372430 Row k of A304038 is a subset of row k of A048793. %e A372430 The prime indices of 135 are {2,2,2,3}, and the binary indices are {1,2,3,8}. Since {2,3} is a subset of {1,2,3,8}, 135 is in the sequence. %e A372430 The terms together with their prime indices begin: %e A372430 1: {} %e A372430 3: {2} %e A372430 5: {3} %e A372430 15: {2,3} %e A372430 27: {2,2,2} %e A372430 39: {2,6} %e A372430 55: {3,5} %e A372430 63: {2,2,4} %e A372430 85: {3,7} %e A372430 121: {5,5} %e A372430 125: {3,3,3} %e A372430 The terms together with their binary expansions and binary indices begin: %e A372430 1: 1 ~ {1} %e A372430 3: 11 ~ {1,2} %e A372430 5: 101 ~ {1,3} %e A372430 15: 1111 ~ {1,2,3,4} %e A372430 27: 11011 ~ {1,2,4,5} %e A372430 39: 100111 ~ {1,2,3,6} %e A372430 55: 110111 ~ {1,2,3,5,6} %e A372430 63: 111111 ~ {1,2,3,4,5,6} %e A372430 85: 1010101 ~ {1,3,5,7} %e A372430 121: 1111001 ~ {1,4,5,6,7} %e A372430 125: 1111101 ~ {1,3,4,5,6,7} %t A372430 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372430 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372430 Select[Range[1000],SubsetQ[bix[#],prix[#]]&] %Y A372430 The version for equal lengths is A071814, zeros of A372441. %Y A372430 The version for equal sums is A372427, zeros of A372428. %Y A372430 For disjoint instead of subset we have A372431, complement A372432. %Y A372430 The version for equal maxima is A372436, zeros of A372442. %Y A372430 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372430 A029837 gives greatest binary index, least A001511. %Y A372430 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372430 A061395 gives greatest prime index, least A055396. %Y A372430 A070939 gives length of binary expansion. %Y A372430 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372430 Cf. A000720, A001221, A230877, A243055, A304818, A355536, A358136, A372429. %K A372430 nonn,base %O A372430 1,2 %A A372430 _Gus Wiseman_, May 02 2024