This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372431 #5 May 05 2024 08:55:37 %S A372431 1,2,4,7,8,9,10,11,12,13,16,17,19,21,23,24,25,26,29,31,32,33,34,35,36, %T A372431 37,38,40,41,43,44,46,47,48,49,50,53,57,58,59,61,62,64,65,67,69,71,72, %U A372431 73,74,76,79,80,81,82,83,84,86,89,92,93,94,96,97,98,101 %N A372431 Positive integers k such that the prime indices of k are disjoint from the binary indices of k. %C A372431 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372431 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A372431 The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so 65 is in the sequence. %e A372431 The terms together with their prime indices begin: %e A372431 1: {} %e A372431 2: {1} %e A372431 4: {1,1} %e A372431 7: {4} %e A372431 8: {1,1,1} %e A372431 9: {2,2} %e A372431 10: {1,3} %e A372431 11: {5} %e A372431 12: {1,1,2} %e A372431 13: {6} %e A372431 16: {1,1,1,1} %e A372431 The terms together with their binary expansions and binary indices begin: %e A372431 1: 1 ~ {1} %e A372431 2: 10 ~ {2} %e A372431 4: 100 ~ {3} %e A372431 7: 111 ~ {1,2,3} %e A372431 8: 1000 ~ {4} %e A372431 9: 1001 ~ {1,4} %e A372431 10: 1010 ~ {2,4} %e A372431 11: 1011 ~ {1,2,4} %e A372431 12: 1100 ~ {3,4} %e A372431 13: 1101 ~ {1,3,4} %e A372431 16: 10000 ~ {5} %t A372431 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372431 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372431 Select[Range[100],Intersection[bix[#],prix[#]]=={}&] %Y A372431 For subset instead of disjoint we have A372430. %Y A372431 The complement is A372432. %Y A372431 Equal lengths: A071814, zeros of A372441. %Y A372431 Equal sums: A372427, zeros of A372428. %Y A372431 Equal maxima: A372436, zeros of A372442. %Y A372431 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372431 A029837 gives greatest binary index, least A001511. %Y A372431 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372431 A061395 gives greatest prime index, least A055396. %Y A372431 A070939 gives length of binary expansion. %Y A372431 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372431 Cf. A000720, A001221, A059893, A096111, A230877, A243055, A304818, A355536, A358136, A372429. %K A372431 nonn,base %O A372431 1,2 %A A372431 _Gus Wiseman_, May 03 2024