This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372432 #5 May 05 2024 08:55:31 %S A372432 3,5,6,14,15,18,20,22,27,28,30,39,42,45,51,52,54,55,56,60,63,66,68,70, %T A372432 75,77,78,85,87,88,90,91,95,99,100,102,104,105,110,111,114,117,119, %U A372432 121,123,125,126,133,135,138,140,147,150,152,154,159,162,165,168 %N A372432 Positive integers k such that the prime indices of k are not disjoint from the binary indices of k. %C A372432 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372432 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A372432 The binary indices of 18 are {2,5}, and the prime indices are {1,2,2}, so 18 is in the sequence. %e A372432 The terms together with their prime indices begin: %e A372432 3: {2} %e A372432 5: {3} %e A372432 6: {1,2} %e A372432 14: {1,4} %e A372432 15: {2,3} %e A372432 18: {1,2,2} %e A372432 20: {1,1,3} %e A372432 22: {1,5} %e A372432 27: {2,2,2} %e A372432 28: {1,1,4} %e A372432 30: {1,2,3} %e A372432 The terms together with their binary expansions and binary indices begin: %e A372432 3: 11 ~ {1,2} %e A372432 5: 101 ~ {1,3} %e A372432 6: 110 ~ {2,3} %e A372432 14: 1110 ~ {2,3,4} %e A372432 15: 1111 ~ {1,2,3,4} %e A372432 18: 10010 ~ {2,5} %e A372432 20: 10100 ~ {3,5} %e A372432 22: 10110 ~ {2,3,5} %e A372432 27: 11011 ~ {1,2,4,5} %e A372432 28: 11100 ~ {3,4,5} %e A372432 30: 11110 ~ {2,3,4,5} %t A372432 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372432 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372432 Select[Range[100],Intersection[bix[#],prix[#]]!={}&] %Y A372432 For subset instead of overlap we have A372430. %Y A372432 The complement is A372431. %Y A372432 Equal lengths: A071814, zeros of A372441. %Y A372432 Equal sums: A372427, zeros of A372428. %Y A372432 Equal maxima: A372436, zeros of A372442. %Y A372432 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372432 A029837 gives greatest binary index, least A001511. %Y A372432 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372432 A061395 gives greatest prime index, least A055396. %Y A372432 A070939 gives length of binary expansion. %Y A372432 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372432 Cf. A000720, A001221, A059893, A096111, A230877, A243055, A304818, A355536, A358136, A372429. %K A372432 nonn,base %O A372432 1,1 %A A372432 _Gus Wiseman_, May 03 2024