This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372436 #6 May 05 2024 08:54:48 %S A372436 3,5,14,22,39,52,68,85,102,119,133,152,171,190,209,228,247,276,299, %T A372436 322,345,368,391,414,437,460,483,506,522,551,580,609,638,667,696,725, %U A372436 754,783,812,841,870,928,957,986,1015,1054,1085,1116,1178,1209,1240,1302 %N A372436 Numbers whose binary indices and prime indices have the same maximum. %C A372436 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372436 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372436 Note that a number's binary and prime indices cannot have the same minimum; see A372437. %F A372436 A070939(a(n)) = A061395(a(n)). %e A372436 The binary indices of 345 are {1,4,5,7,9}, and the prime indices are {2,3,9}. Both have maximum 9, so 345 is in the sequence. %e A372436 The terms together with their prime indices begin: %e A372436 3: {2} %e A372436 5: {3} %e A372436 14: {1,4} %e A372436 22: {1,5} %e A372436 39: {2,6} %e A372436 52: {1,1,6} %e A372436 68: {1,1,7} %e A372436 85: {3,7} %e A372436 102: {1,2,7} %e A372436 119: {4,7} %e A372436 133: {4,8} %e A372436 152: {1,1,1,8} %e A372436 171: {2,2,8} %e A372436 The terms together with their binary expansions and binary indices begin: %e A372436 3: 11 ~ {1,2} %e A372436 5: 101 ~ {1,3} %e A372436 14: 1110 ~ {2,3,4} %e A372436 22: 10110 ~ {2,3,5} %e A372436 39: 100111 ~ {1,2,3,6} %e A372436 52: 110100 ~ {3,5,6} %e A372436 68: 1000100 ~ {3,7} %e A372436 85: 1010101 ~ {1,3,5,7} %e A372436 102: 1100110 ~ {2,3,6,7} %e A372436 119: 1110111 ~ {1,2,3,5,6,7} %e A372436 133: 10000101 ~ {1,3,8} %e A372436 152: 10011000 ~ {4,5,8} %e A372436 171: 10101011 ~ {1,2,4,6,8} %t A372436 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372436 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372436 Select[Range[100],Max[prix[#]]==Max[bix[#]]&] %Y A372436 For length instead of maximum we have A071814. %Y A372436 For sum instead of maximum we have A372427. %Y A372436 Positions of zeros in A372442, for minimum instead of maximum A372437. %Y A372436 A003963 gives product of prime indices. %Y A372436 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372436 A029837 gives greatest binary index, least A001511. %Y A372436 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372436 A061395 gives greatest prime index, least A055396. %Y A372436 A070939 gives length of binary expansion. %Y A372436 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372436 Cf. A000720, A014499, A030101, A066099, A096111, A304818, A355536, A359401, A359402, A372428-A372433, A372441. %K A372436 nonn,base %O A372436 1,1 %A A372436 _Gus Wiseman_, May 04 2024