cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372436 Numbers whose binary indices and prime indices have the same maximum.

This page as a plain text file.
%I A372436 #6 May 05 2024 08:54:48
%S A372436 3,5,14,22,39,52,68,85,102,119,133,152,171,190,209,228,247,276,299,
%T A372436 322,345,368,391,414,437,460,483,506,522,551,580,609,638,667,696,725,
%U A372436 754,783,812,841,870,928,957,986,1015,1054,1085,1116,1178,1209,1240,1302
%N A372436 Numbers whose binary indices and prime indices have the same maximum.
%C A372436 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372436 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A372436 Note that a number's binary and prime indices cannot have the same minimum; see A372437.
%F A372436 A070939(a(n)) = A061395(a(n)).
%e A372436 The binary indices of 345 are {1,4,5,7,9}, and the prime indices are {2,3,9}. Both have maximum 9, so 345 is in the sequence.
%e A372436 The terms together with their prime indices begin:
%e A372436      3: {2}
%e A372436      5: {3}
%e A372436     14: {1,4}
%e A372436     22: {1,5}
%e A372436     39: {2,6}
%e A372436     52: {1,1,6}
%e A372436     68: {1,1,7}
%e A372436     85: {3,7}
%e A372436    102: {1,2,7}
%e A372436    119: {4,7}
%e A372436    133: {4,8}
%e A372436    152: {1,1,1,8}
%e A372436    171: {2,2,8}
%e A372436 The terms together with their binary expansions and binary indices begin:
%e A372436      3:           11 ~ {1,2}
%e A372436      5:          101 ~ {1,3}
%e A372436     14:         1110 ~ {2,3,4}
%e A372436     22:        10110 ~ {2,3,5}
%e A372436     39:       100111 ~ {1,2,3,6}
%e A372436     52:       110100 ~ {3,5,6}
%e A372436     68:      1000100 ~ {3,7}
%e A372436     85:      1010101 ~ {1,3,5,7}
%e A372436    102:      1100110 ~ {2,3,6,7}
%e A372436    119:      1110111 ~ {1,2,3,5,6,7}
%e A372436    133:     10000101 ~ {1,3,8}
%e A372436    152:     10011000 ~ {4,5,8}
%e A372436    171:     10101011 ~ {1,2,4,6,8}
%t A372436 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A372436 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A372436 Select[Range[100],Max[prix[#]]==Max[bix[#]]&]
%Y A372436 For length instead of maximum we have A071814.
%Y A372436 For sum instead of maximum we have A372427.
%Y A372436 Positions of zeros in A372442, for minimum instead of maximum A372437.
%Y A372436 A003963 gives product of prime indices.
%Y A372436 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372436 A029837 gives greatest binary index, least A001511.
%Y A372436 A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
%Y A372436 A061395 gives greatest prime index, least A055396.
%Y A372436 A070939 gives length of binary expansion.
%Y A372436 A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
%Y A372436 Cf. A000720, A014499, A030101, A066099, A096111, A304818, A355536, A359401, A359402, A372428-A372433, A372441.
%K A372436 nonn,base
%O A372436 1,1
%A A372436 _Gus Wiseman_, May 04 2024