This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372437 #9 May 07 2024 17:41:08 %S A372437 1,-1,2,-2,1,-3,3,-1,1,-4,2,-5,1,-1,4,-6,1,-7,2,-1,1,-8,3,-2,1,-1,2, %T A372437 -9,1,-10,5,-1,1,-2,2,-11,1,-1,3,-12,1,-13,2,-1,1,-14,4,-3,1,-1,2,-15, %U A372437 1,-2,3,-1,1,-16,2,-17,1,-1,6,-2,1,-18,2,-1,1,-19,3 %N A372437 (Least binary index of n) minus (least prime index of n). %C A372437 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372437 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372437 Is 0 the only integer not appearing in the data? %F A372437 a(2n) = A001511(n). %F A372437 a(2n + 1) = -A038802(n). %F A372437 a(n) = A001511(n) - A055396(n). %t A372437 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372437 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372437 Table[Min[bix[n]]-Min[prix[n]],{n,2,100}] %Y A372437 Positions of first appearances are A174090. %Y A372437 For sum instead of minimum we have A372428, zeros A372427. %Y A372437 For maximum instead of minimum we have A372442, zeros A372436. %Y A372437 For length instead of minimum we have A372441, zeros A071814. %Y A372437 A003963 gives product of prime indices. %Y A372437 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372437 A029837 gives greatest binary index, least A001511. %Y A372437 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372437 A061395 gives greatest prime index, least A055396. %Y A372437 A070939 gives length of binary expansion. %Y A372437 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372437 Cf. A000720, A014499, A061712, A243055, A304818, A355536, A359495, A359402, A372429-A372432, A372588-A372591. %K A372437 sign,base %O A372437 2,3 %A A372437 _Gus Wiseman_, May 06 2024