This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372438 #6 May 05 2024 10:42:14 %S A372438 6,18,20,54,56,60,100,162,168,176,180,280,300,392,416,486,500,504,528, %T A372438 540,840,880,900,1088,1176,1232,1248,1400,1458,1500,1512,1584,1620, %U A372438 1936,1960,2080,2432,2500,2520,2640,2700,2744,2912,3264,3528,3696,3744,4200 %N A372438 Least binary index equals greatest prime index. %C A372438 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372438 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372438 Are there any squarefree terms > 6? %F A372438 A001511(a(n)) = A061395(a(n)). %e A372438 The binary indices of 60 are {3,4,5,6}, the prime indices are {1,1,2,3}, and 3 = 3, so 60 is in the sequence. %e A372438 The terms together with their prime indices begin: %e A372438 6: {1,2} %e A372438 18: {1,2,2} %e A372438 20: {1,1,3} %e A372438 54: {1,2,2,2} %e A372438 56: {1,1,1,4} %e A372438 60: {1,1,2,3} %e A372438 100: {1,1,3,3} %e A372438 162: {1,2,2,2,2} %e A372438 168: {1,1,1,2,4} %e A372438 176: {1,1,1,1,5} %e A372438 180: {1,1,2,2,3} %e A372438 280: {1,1,1,3,4} %e A372438 300: {1,1,2,3,3} %e A372438 The terms together with their binary expansions and binary indices begin: %e A372438 6: 110 ~ {2,3} %e A372438 18: 10010 ~ {2,5} %e A372438 20: 10100 ~ {3,5} %e A372438 54: 110110 ~ {2,3,5,6} %e A372438 56: 111000 ~ {4,5,6} %e A372438 60: 111100 ~ {3,4,5,6} %e A372438 100: 1100100 ~ {3,6,7} %e A372438 162: 10100010 ~ {2,6,8} %e A372438 168: 10101000 ~ {4,6,8} %e A372438 176: 10110000 ~ {5,6,8} %e A372438 180: 10110100 ~ {3,5,6,8} %e A372438 280: 100011000 ~ {4,5,9} %e A372438 300: 100101100 ~ {3,4,6,9} %t A372438 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372438 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372438 Select[Range[1000],Min[bix[#]]==Max[prix[#]]&] %Y A372438 Same length: A071814, zeros of A372441. %Y A372438 Same sum: A372427, zeros of A372428. %Y A372438 Same maxima: A372436, zeros of A372442. %Y A372438 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372438 A029837 gives greatest binary index, least A001511. %Y A372438 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372438 A061395 gives greatest prime index, least A055396. %Y A372438 A070939 gives length of binary expansion. %Y A372438 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372438 Cf. A000720, A014499, A030101, A061712, A318283, A355536, A359401, A359402, A372429-A372433. %K A372438 nonn,base %O A372438 1,1 %A A372438 _Gus Wiseman_, May 04 2024