This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372439 #9 May 07 2024 20:12:41 %S A372439 2,3,6,7,8,9,10,13,14,15,18,19,21,22,24,26,27,29,30,32,33,34,37,38,39, %T A372439 40,42,43,45,46,49,50,51,53,54,56,57,58,61,62,63,66,69,70,71,72,74,75, %U A372439 77,78,79,81,82,86,87,88,89,90,91,93,94,96,98,99,101,102 %N A372439 Numbers k such that the least binary index of k plus the least prime index of k is odd. %C A372439 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372439 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A372439 The terms (center), their binary indices (left), and their prime indices (right) begin: %e A372439 {2} 2 (1) %e A372439 {1,2} 3 (2) %e A372439 {2,3} 6 (2,1) %e A372439 {1,2,3} 7 (4) %e A372439 {4} 8 (1,1,1) %e A372439 {1,4} 9 (2,2) %e A372439 {2,4} 10 (3,1) %e A372439 {1,3,4} 13 (6) %e A372439 {2,3,4} 14 (4,1) %e A372439 {1,2,3,4} 15 (3,2) %e A372439 {2,5} 18 (2,2,1) %e A372439 {1,2,5} 19 (8) %e A372439 {1,3,5} 21 (4,2) %e A372439 {2,3,5} 22 (5,1) %e A372439 {4,5} 24 (2,1,1,1) %e A372439 {2,4,5} 26 (6,1) %e A372439 {1,2,4,5} 27 (2,2,2) %e A372439 {1,3,4,5} 29 (10) %e A372439 {2,3,4,5} 30 (3,2,1) %e A372439 {6} 32 (1,1,1,1,1) %e A372439 {1,6} 33 (5,2) %e A372439 {2,6} 34 (7,1) %t A372439 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372439 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372439 Select[Range[100],OddQ[Min[bix[#]]+Min[prix[#]]]&] %Y A372439 Positions of odd terms in A372437. %Y A372439 The complement is 1 followed by A372440. %Y A372439 For sum (A372428, zeros A372427) we have A372586, complement A372587. %Y A372439 For maximum (A372442, zeros A372436) we have A372588, complement A372589. %Y A372439 For length (A372441, zeros A071814) we have A372590, complement A372591. %Y A372439 A003963 gives product of prime indices, binary A096111. %Y A372439 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372439 A029837 gives greatest binary index, least A001511. %Y A372439 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372439 A061395 gives greatest prime index, least A055396. %Y A372439 A070939 gives length of binary expansion. %Y A372439 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372439 Cf. A000720, A061712, A174090, A243055, A359495, A372429, A372430, A372431, A372432, A372438, A372471. %K A372439 nonn,base %O A372439 1,1 %A A372439 _Gus Wiseman_, May 06 2024