This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372440 #6 May 07 2024 20:12:35 %S A372440 4,5,11,12,16,17,20,23,25,28,31,35,36,41,44,47,48,52,55,59,60,64,65, %T A372440 67,68,73,76,80,83,84,85,92,95,97,100,103,108,109,112,115,116,121,124, %U A372440 125,127,132,137,140,143,144,145,148,149,155,156,157,164,167,172 %N A372440 Numbers k such that the least binary index of k plus the least prime index of k is even. %C A372440 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372440 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A372440 The terms (center), their binary indices (left), and their prime indices (right) begin: %e A372440 {3} 4 (1,1) %e A372440 {1,3} 5 (3) %e A372440 {1,2,4} 11 (5) %e A372440 {3,4} 12 (2,1,1) %e A372440 {5} 16 (1,1,1,1) %e A372440 {1,5} 17 (7) %e A372440 {3,5} 20 (3,1,1) %e A372440 {1,2,3,5} 23 (9) %e A372440 {1,4,5} 25 (3,3) %e A372440 {3,4,5} 28 (4,1,1) %e A372440 {1,2,3,4,5} 31 (11) %e A372440 {1,2,6} 35 (4,3) %e A372440 {3,6} 36 (2,2,1,1) %e A372440 {1,4,6} 41 (13) %e A372440 {3,4,6} 44 (5,1,1) %e A372440 {1,2,3,4,6} 47 (15) %e A372440 {5,6} 48 (2,1,1,1,1) %e A372440 {3,5,6} 52 (6,1,1) %e A372440 {1,2,3,5,6} 55 (5,3) %e A372440 {1,2,4,5,6} 59 (17) %e A372440 {3,4,5,6} 60 (3,2,1,1) %e A372440 {7} 64 (1,1,1,1,1,1) %t A372440 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372440 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372440 Select[Range[100],EvenQ[Min[bix[#]]+Min[prix[#]]]&] %Y A372440 For sum (A372428, zeros A372427) we have A372587, complement A372586. %Y A372440 Positions of even terms in A372437. %Y A372440 The complement is 1 followed by A372439. %Y A372440 For length (A372441, zeros A071814) we have A372591, complement A372590. %Y A372440 For maximum (A372442, zeros A372436) we have A372589, complement A372588. %Y A372440 A003963 gives product of prime indices, binary A096111. %Y A372440 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372440 A029837 gives greatest binary index, least A001511. %Y A372440 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372440 A061395 gives greatest prime index, least A055396. %Y A372440 A070939 gives length of binary expansion. %Y A372440 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372440 Cf. A000720, A061712, A174090, A243055, A359402, A359495, A372429, A372430, A372431, A372432, A372438, A372471. %K A372440 nonn,base %O A372440 1,1 %A A372440 _Gus Wiseman_, May 06 2024