This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372460 #7 May 02 2024 09:46:32 %S A372460 1,4,40,442,5136,61424,748462,9240480,115194720,1446820588, %T A372460 18279806600,232071505120,2958062657550,37831613904036, %U A372460 485233557808704,6239148779539472,80397210629541696,1037970502613332320,13423439565585274180,173859642721737225552 %N A372460 Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x-x^2) )^(2*n). %F A372460 a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(5*n-k-1,n-2*k). %F A372460 The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 * (1-x-x^2)^2 ). See A368967. %o A372460 (PARI) a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k)); %Y A372460 Cf. A368967, A372233, A372464. %K A372460 nonn %O A372460 0,2 %A A372460 _Seiichi Manyama_, May 01 2024