cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372466 The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).

This page as a plain text file.
%I A372466 #11 Mar 30 2025 02:39:52
%S A372466 0,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,
%T A372466 1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,
%U A372466 1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3
%N A372466 The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).
%C A372466 All the terms are of the form 2^k-1 (A000225).
%H A372466 Amiram Eldar, <a href="/A372466/b372466.txt">Table of n, a(n) for n = 1..10000</a>
%F A372466 a(n) = A051903(A036537(n)).
%F A372466 a(n) = 2^A372467(n) - 1.
%F A372466 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(1) + Sum_{k>=2} (2^k-1) * (d(k) - d(k-1))) / A327839 = 1.25306367526166810834..., where d(k) = Product_{p prime} (1 - 1/p + Sum_{i=1..k} (1/p^(2^i-1)-1/p^(2^i))).
%t A372466 pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q[# + 1] &], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
%o A372466 (PARI) ispow2(n) = n >> valuation(n, 2) == 1;
%o A372466 lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(apply(x -> x + 1, e))), print1(vecmax(e), ", "))); }
%Y A372466 Cf. A000225, A036537, A051903, A327839, A372467.
%Y A372466 Similar sequences: A368710, A368711, A368712, A368713, A369933, A369935.
%K A372466 nonn,easy
%O A372466 1,7
%A A372466 _Amiram Eldar_, May 01 2024