This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372466 #11 Mar 30 2025 02:39:52 %S A372466 0,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1, %T A372466 1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1, %U A372466 1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3 %N A372466 The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537). %C A372466 All the terms are of the form 2^k-1 (A000225). %H A372466 Amiram Eldar, <a href="/A372466/b372466.txt">Table of n, a(n) for n = 1..10000</a> %F A372466 a(n) = A051903(A036537(n)). %F A372466 a(n) = 2^A372467(n) - 1. %F A372466 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(1) + Sum_{k>=2} (2^k-1) * (d(k) - d(k-1))) / A327839 = 1.25306367526166810834..., where d(k) = Product_{p prime} (1 - 1/p + Sum_{i=1..k} (1/p^(2^i-1)-1/p^(2^i))). %t A372466 pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q[# + 1] &], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150] %o A372466 (PARI) ispow2(n) = n >> valuation(n, 2) == 1; %o A372466 lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(apply(x -> x + 1, e))), print1(vecmax(e), ", "))); } %Y A372466 Cf. A000225, A036537, A051903, A327839, A372467. %Y A372466 Similar sequences: A368710, A368711, A368712, A368713, A369933, A369935. %K A372466 nonn,easy %O A372466 1,7 %A A372466 _Amiram Eldar_, May 01 2024