This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372471 #7 May 10 2024 09:27:40 %S A372471 2,1,2,1,3,1,2,3,1,2,4,1,3,4,1,5,1,2,5,1,2,3,5,1,3,4,5,1,2,3,4,5,1,3, %T A372471 6,1,4,6,1,2,4,6,1,2,3,4,6,1,3,5,6,1,2,4,5,6,1,3,4,5,6,1,2,7,1,2,3,7, %U A372471 1,4,7,1,2,3,4,7,1,2,5,7,1,4,5,7,1,6,7 %N A372471 Irregular triangle read by rows where row n lists the binary indices of the n-th prime number. %C A372471 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A372471 We have prime(12) = (2^1 + 2^3 + 2^6)/2, so row 12 is (1,3,6). %e A372471 Each prime followed by its binary indices: %e A372471 2: 2 %e A372471 3: 1 2 %e A372471 5: 1 3 %e A372471 7: 1 2 3 %e A372471 11: 1 2 4 %e A372471 13: 1 3 4 %e A372471 17: 1 5 %e A372471 19: 1 2 5 %e A372471 23: 1 2 3 5 %e A372471 29: 1 3 4 5 %e A372471 31: 1 2 3 4 5 %e A372471 37: 1 3 6 %e A372471 41: 1 4 6 %e A372471 43: 1 2 4 6 %e A372471 47: 1 2 3 4 6 %t A372471 Table[Join@@Position[Reverse[IntegerDigits[Prime[n],2]],1],{n,15}] %Y A372471 Row lengths are A014499. %Y A372471 Second column is A023506(n) + 1. %Y A372471 Final column is A035100. %Y A372471 Prime-indexed rows of A048793. %Y A372471 Row-sums are A372429, restriction of A029931 (sum of binary indices). %Y A372471 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372471 A029837 gives greatest binary index, least A001511. %Y A372471 A048793 lists binary indices, length A000120, reverse A272020. %Y A372471 A070939 gives length of binary expansion. %Y A372471 Cf. A000040, A005940, A056239, A071814, A096111, A191232, A230877, A231204, A372427-A372442. %K A372471 nonn,tabf,base %O A372471 1,1 %A A372471 _Gus Wiseman_, May 07 2024