This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372472 #8 May 20 2024 05:07:27 %S A372472 0,1,0,1,1,0,2,1,1,1,0,3,2,2,2,1,2,1,1,0,4,4,3,3,3,2,3,3,2,2,1,2,2,1, %T A372472 2,2,1,1,1,5,5,4,4,4,3,4,4,3,3,2,4,3,3,3,2,3,2,2,2,1,4,3,3,2,3,3,2,2, %U A372472 2,1,3,3,2,2,1,2,1,0,6,6,5,5,5,5,5,4,4 %N A372472 Number of zeros in the binary expansion of the n-th squarefree number. %F A372472 a(n) = A023416(A005117(n)). %F A372472 a(n) + A372433(n) = A070939(A005117(n)) = A372475(n). %e A372472 The 12th squarefree number is 17, with binary expansion (1,0,0,0,1), so a(12) = 3. %p A372472 A372583 := proc(n) %p A372472 A023416(A005117(n)) ; %p A372472 end proc: %p A372472 seq(A372583(n),n=1..200) ; # _R. J. Mathar_, May 20 2024 %t A372472 DigitCount[Select[Range[100],SquareFreeQ],2,0] %Y A372472 Positions of first appearances are A372473. %Y A372472 Restriction of A023416 to A005117. %Y A372472 For prime instead of squarefree we have A035103, ones A014499, bits A035100. %Y A372472 Counting 1's instead of 0's (so restrict A000120 to A005117) gives A372433. %Y A372472 For binary length we have A372475, run-lengths A077643. %Y A372472 A030190 gives binary expansion, reversed A030308. %Y A372472 A048793 lists positions of ones in reversed binary expansion, sum A029931. %Y A372472 A371571 lists positions of zeros in binary expansion, sum A359359. %Y A372472 A371572 lists positions of ones in binary expansion, sum A230877. %Y A372472 A372515 lists positions of zeros in reversed binary expansion, sum A359400. %Y A372472 Cf. A003714, A039004, A049093, A049094, A059015, A069010, A070939, A073642, A145037, A211997, A368494, A372474, A372516. %K A372472 nonn,base %O A372472 1,7 %A A372472 _Gus Wiseman_, May 09 2024