This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372474 #20 May 13 2024 13:57:13 %S A372474 2,1,8,7,19,32,99,55,174,310,565,1029,1902,3513,6544,6543,23001,43395, %T A372474 82029,155612,295957,564164,1077901,3957811,3965052,7605342,14630844, %U A372474 28194383,54400029,105097568,393615809,393615807,762939128,1480206930,2874398838,5586502349 %N A372474 Least k such that the k-th prime number has exactly n zeros in its binary expansion. %F A372474 a(n) = A000720(A066195(n)). - _Robert Israel_, May 13 2024 %e A372474 The prime numbers A000040(a(n)) together with their binary expansions and binary indices begin: %e A372474 3: 11 ~ {1,2} %e A372474 2: 10 ~ {2} %e A372474 19: 10011 ~ {1,2,5} %e A372474 17: 10001 ~ {1,5} %e A372474 67: 1000011 ~ {1,2,7} %e A372474 131: 10000011 ~ {1,2,8} %e A372474 523: 1000001011 ~ {1,2,4,10} %e A372474 257: 100000001 ~ {1,9} %e A372474 1033: 10000001001 ~ {1,4,11} %e A372474 2053: 100000000101 ~ {1,3,12} %e A372474 4099: 1000000000011 ~ {1,2,13} %e A372474 8209: 10000000010001 ~ {1,5,14} %e A372474 16417: 100000000100001 ~ {1,6,15} %e A372474 32771: 1000000000000011 ~ {1,2,16} %e A372474 65539: 10000000000000011 ~ {1,2,17} %e A372474 65537: 10000000000000001 ~ {1,17} %e A372474 262147: 1000000000000000011 ~ {1,2,19} %e A372474 524353: 10000000000001000001 ~ {1,7,20} %e A372474 1048609: 100000000000000100001 ~ {1,6,21} %e A372474 2097169: 1000000000000000010001 ~ {1,5,22} %e A372474 4194433: 10000000000000010000001 ~ {1,8,23} %e A372474 8388617: 100000000000000000001001 ~ {1,4,24} %e A372474 16777729: 1000000000000001000000001 ~ {1,10,25} %e A372474 67108913: 100000000000000000000110001 ~ {1,5,6,27} %e A372474 67239937: 100000000100000000000000001 ~ {1,18,27} %t A372474 nn=10000; %t A372474 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; %t A372474 dcs=DigitCount[Select[Range[nn],PrimeQ],2,0]; %t A372474 Table[Position[dcs,i][[1,1]],{i,0,spnm[dcs]}] %o A372474 (Python) %o A372474 from itertools import count %o A372474 from sympy import isprime, primepi %o A372474 from sympy.utilities.iterables import multiset_permutations %o A372474 def A372474(n): %o A372474 for l in count(n): %o A372474 m = 1<<l %o A372474 for d in multiset_permutations('0'*n+'1'*(l-n)): %o A372474 k = m+int('0'+''.join(d),2) %o A372474 if isprime(k): %o A372474 return primepi(k) # _Chai Wah Wu_, May 13 2024 %Y A372474 Positions of first appearances in A035103. %Y A372474 For squarefree instead of prime we have A372473, firsts of A372472. %Y A372474 Counting ones (weight) gives A372517, firsts of A014499. %Y A372474 Counting squarefree bits gives A372540, firsts of A372475, runs A077643. %Y A372474 Counting squarefree ones gives A372541, firsts of A372433. %Y A372474 Counting bits (length) gives A372684, firsts of A035100. %Y A372474 A000120 counts ones in binary expansion (binary weight), zeros A080791. %Y A372474 A030190 gives binary expansion, reversed A030308. %Y A372474 A048793 lists positions of ones in reversed binary expansion, sum A029931. %Y A372474 A070939 gives length of binary expansion (number of bits). %Y A372474 Cf. A059015, A066195, A069010, A073642, A145037, A211997, A230877, A359359, A359400, A371571, A372516. %K A372474 nonn,base %O A372474 0,1 %A A372474 _Gus Wiseman_, May 11 2024 %E A372474 a(22)-a(35) from and offset corrected by _Chai Wah Wu_, May 13 2024