A372477 Areas of alternating equilateral and non-equilateral triangles that make up a three-leaf tiling over a regular triangular grid.
1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 16, 17, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 39, 42, 43, 44, 46, 48, 49, 50, 52, 56, 57, 60, 61, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 82, 84, 85, 86, 89, 90, 91, 93, 94, 97, 100
Offset: 1
Keywords
Examples
For L=4: Number Layer n = 1, Min Layer 1, [1, 1] Number Layer n = 2, Min Layer 2, [4, 2, 3, 2, 4] Number Layer n = 3, Min Layer 5, [9, 6, 7, 5, 7, 6, 9] Number Layer n = 4, Min Layer 10, [16, 12, 13, 10, 12, 10, 13, 12, 16] Number Layer n = 5, Min Layer 16, [25, 20, 21, 17, 19, 16, 19, 17, 21, 20, 25] Number of terms below L^2+1=17 is 12. In increasing order, without duplicates: [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 16]. Terms below 17 are a(1)=1, a(2)=2, ..., a(11)=13, a(12)=16. . =============================== === Alternative layout idea === =============================== . The table below lists the numbers in layer n for n = 1..5. For each layer n >= 2, the table shows a pair of rows; the upper and lower rows in each pair list the triangle areas computed using the above formulas for b(n,k) and c(n,k), respectively. min. --+-----+-------+-------+-------+-------+-------+-------+ number n | b/c | k = 0 | 1 | 2 | 3 | 4 | 5 | in layer ==+=====+=======+=======+=======+=======+=======+=======+========== 1 | - | 1 1 | | | | | | 1 --+-----+-------+-------+-------+-------+-------+-------+---------- 2 | c | 2 | 2 | | | | | 2 | b | 4 | 3 | 4 | | | | --+-----+-------+-------+-------+-------+-------+-------+---------- 3 | c | 6 | 5 | 6 | | | | 5 | b | 9 | 7 | 7 | 9 | | | --+-----+-------+-------+-------+-------+-------+-------+---------- 4 | c | 12 | 10 | 10 | 12 | | | 10 | b | 16 | 13 | 12 | 13 | 16 | | --+-----+-------+-------+-------+-------+-------+-------+---------- 5 | c | 20 | 17 | 16 | 17 | 20 | | 16 | b | 25 | 21 | 19 | 19 | 21 | 25 | --+-----+-------+-------+-------+-------+-------+-------+----------
Links
- Yury Kazakov, Table of n, a(n) for n = 1..1000
- N. A. Shikhova, Discussion of a problem on the social network VK (in Russian).
- N. A. Shikhova, Picture 1. The sequence single slice.
- N. A. Shikhova, Pick's theorem for triangular grid (in Russian).
- Yury Kazakov, Picture 2. The sequence of plane tiling.
- Wikipedia, Pick's theorem.
Programs
-
Python
import math L=10 #generates terms below L**2+1 Lmax=math.trunc((1+2*math.sqrt(3*L**2+1))/3)+1 tr=set() tr.add(1) for n in range(2,Lmax): for k in range(0,n): p1=n*n+k*k-k*n p2=p1+k-n if p1<=L**2: tr.add(p1) if p2<=L**2: tr.add(p2) print('Number terms below', L**2+1, 'is', len(tr)) print(sorted(tr))
Formula
Terms in {a(n)} <= L^2 are computed as follows:
Let Lmax = floor((2*sqrt(3*L^2+1)+1)/3)+1;
for n=1..Lmax, compute the terms in layer n, which are
[b(n,0), c(n,0), b(n,1), c(n,1), ..., b(n,n-1), c(n,n-1), b(n,n)],
using the formulas
b(n,k) = n*n + k*k - k*n for k = 0..n
and
c(n,k) = n*n + k*k - k*n + k - n for k = 0..n-1;
sort terms b(n,k) <= L^2 and c(n,k) <= L^2 in increasing order, and remove duplicates.
Comments