A111011 Primes in A002533.
7, 19, 73, 241, 411379, 693110401, 80746825394092993, 15848109838244286131940714481, 12238279486576766124458805567902551228138920205718424019, 1732765524527243824670663837908764472971413888795440694899, 20618141429646301085064054485889973597180353561103310272561, 2919234250884982146911220973819117919577845597870261813393281
Offset: 1
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
Links
- Robert Israel, Table of n, a(n) for n = 1..16
Programs
-
Maple
B[0]:= 1: B[1]:= 1: P:= NULL: count:= 0: for n from 2 while count < 16 do B[n]:= 2*B[n-1]+5*B[n-2]; if isprime(A[n]) then count:= count+1; P:= P, B[n]; fi od: P; # Robert Israel, May 03 2024
-
Mathematica
Select[LinearRecurrence[{2, 5}, {1, 1}, 125] ,PrimeQ[#]&] (* James C. McMahon, May 02 2024 *)
-
PARI
primenum(n,k,typ) = \\ k=mult,typ=1 num,2 denom. output prime num or denom. { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.) }
Extensions
Simplified the definition, listed some A002533 indices. - R. J. Mathar, Sep 16 2009
a(10)-a(12) from James C. McMahon, May 02 2024
Comments