cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372492 G.f. satisfies A(A(A(A(x)))) = F(x), where F(x) is the g.f. for A002697(n) = n*4^(n-1).

This page as a plain text file.
%I A372492 #22 May 04 2024 06:09:56
%S A372492 0,1,2,0,4,-8,-8,288,-1712,-1888,105472,-288576,-10404800,84940672,
%T A372492 1454871936,-24372060160,-255228956416,8232158755328,49829958005760,
%U A372492 -3390379506089984,-7038865141000192,1699612131395493888,-3459036721655810048,-1025681798088053424128
%N A372492 G.f. satisfies A(A(A(A(x)))) = F(x), where F(x) is the g.f. for A002697(n) = n*4^(n-1).
%H A372492 Seiichi Manyama, <a href="/A372492/b372492.txt">Table of n, a(n) for n = 0..435</a>
%H A372492 Dmitry Kruchinin, Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation A^{2^n}(x)=F(x)</a>, arXiv:1302.1986 [math.CO], 2013.
%F A372492 Let B(x) = A(A(x)). B(B(x)) = F(x).
%F A372492 B(x) = G(2*x)/2, where G(x) is the g.f. for A309509.
%e A372492 B(x) = x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 + 256*x^7 + 768*x^8 - 14848*x^9 + 51200*x^10 + ...
%Y A372492 Cf. A002697, A309509.
%K A372492 sign
%O A372492 0,3
%A A372492 _Seiichi Manyama_, May 03 2024