cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372501 The 2-Zeckendorf array of the second kind, read by upward antidiagonals.

This page as a plain text file.
%I A372501 #38 May 12 2024 11:23:13
%S A372501 0,2,1,5,4,3,7,9,8,6,10,12,16,14,11,13,17,21,27,24,19,15,22,29,35,45,
%T A372501 40,32,18,25,37,48,58,74,66,53,20,30,42,61,79,95,121,108,87,23,33,50,
%U A372501 69,100,129,155,197,176,142,26,38,55,82,113,163,210,252,320,286,231
%N A372501 The 2-Zeckendorf array of the second kind, read by upward antidiagonals.
%C A372501 The 2-Zeckendorf array of the second kind is based on the dual Zeckendorf representation of numbers (see A104326).
%C A372501 Column k contains the numbers whose dual Zeckendorf expansion ends "... 0 1^(k-1)" where ^ denotes repetition.
%C A372501 Rows satisfy this recurrence: T(n,k+1) = T(n,k) + T(n,k-1) + 2 for all n > 0 and k > 1.
%C A372501 As a sequence, the array is a permutation of the nonnegative integers.
%C A372501 As an array, T is an interspersion (hence also a dispersion). This holds as well for all Zeckendorf arrays of the second kind.
%C A372501 In general, for the m-Zeckendorf array of the second kind, the row recursion is given by T(n,k) = T(n,k-1) + T(n,k-m) + m, and the first column represent the "even" numbers.
%F A372501 T(n,1) = A090909(n+1).
%F A372501 T(1,k) = A001911(k-1).
%F A372501 T(2,k) = A019274(k-2).
%F A372501 T(3,k) = A014739(k-1).
%F A372501 T(n,1) = floor((n-1)*phi^2) and T(n,k+1) = floor((T(n,k)+1)*phi) for k > 0, where phi = (1+sqrt(5))/2. This can be considered as an alternative way to define the array.
%e A372501 Array begins:
%e A372501        k=1    2    3    4    5    6    7
%e A372501       +---------------------------------
%e A372501   n=1 |  0    1    3    6   11   19   32
%e A372501   n=2 |  2    4    8   14   24   40   66
%e A372501   n=3 |  5    9   16   27   45   74  121
%e A372501   n=4 |  7   12   21   35   58   95  155
%e A372501   n=5 | 10   17   29   48   79  129  210
%e A372501   n=6 | 13   22   37   61  100  163  265
%e A372501   n=7 | 15   25   42   69  113  184  299
%e A372501 The same in dual Zeckendorf form shows the pattern of digit suffixes, for example column k=3 is all numbers ending 011:
%e A372501           k=1      2       3        4
%e A372501       +------------------------------
%e A372501   n=1 |     0      1      11      111
%e A372501   n=2 |    10    101    1011    10111
%e A372501   n=3 |   110   1101   11011   110111
%e A372501   n=4 |  1010  10101  101011  1010111
%e A372501   n=5 |  1110  11101  111011  1110111
%Y A372501 Cf. A104326.
%Y A372501 Rows n=1..3: A001911, A019274, A014739.
%Y A372501 Columns k=1..3: A090909, A276885, A188012.
%Y A372501 Cf. k-th prepended column: A022342 (k=1), A023444 (k=2).
%K A372501 nonn,tabl
%O A372501 1,2
%A A372501 _A.H.M. Smeets_, May 03 2024