This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372502 #12 Feb 19 2025 01:00:47 %S A372502 0,1,1,2,1,2,1,2,2,2,1,3,1,2,2,3,1,3,1,3,2,2,1,3,2,2,2,3,1,3,1,3,2,2, %T A372502 2,4,1,2,2,3,1,3,1,3,3,2,1,4,2,3,2,3,1,3,2,3,2,2,1,4,1,2,3,3,2,3,1,3, %U A372502 2,3,1,4,1,2,3,3,2,3,1,4,3,2,1,4,2,2,2 %N A372502 The number of "Fermi-Dirac primes" (A050376) that divide n. %C A372502 Differs from A345222 at n = 64, 128, 192, 320, 384, ... . %H A372502 Amiram Eldar, <a href="/A372502/b372502.txt">Table of n, a(n) for n = 1..10000</a> %F A372502 Additive with a(p^e) = A070939(e). %F A372502 a(n) = A064547(n) + A372332(n). %F A372502 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., and P(s) is the prime zeta function. %t A372502 f[p_, e_] := BitLength[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] %o A372502 (PARI) a(n) = vecsum(apply(x -> exponent(x) + 1, factor(n)[, 2])); %o A372502 (Python) %o A372502 from sympy import factorint %o A372502 def A372502(n): return sum(e.bit_length() for e in factorint(n).values()) # _Chai Wah Wu_, Feb 18 2025 %Y A372502 Cf. A050376, A064547, A070939, A077761, A345222, A372332. %K A372502 nonn,easy %O A372502 1,4 %A A372502 _Amiram Eldar_, May 04 2024