This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372514 #39 Apr 12 2025 11:22:45 %S A372514 1,2,4,5,7,8,17,26,11,12,20,37,36,72,73,207,14,15,43,68,42,106,107, %T A372514 310,47,151,152,442,294,745,746,2227,23,22,44,53,52,130,114,386,83, %U A372514 188,156,519,189,884,754,2573,115,269,270,816,387,1405,1406,4134,563,1954 %N A372514 Index k such that A280864(k) = A019565(n) or 0 if A019565(n) does not appear in A280864. %C A372514 Offset matches A019565. %C A372514 Based on Selcoe's comment in A280864 regarding k in sequences S_r = { k = m*r : rad(m) | r }, squarefree r > 1, appearing in order. The appearance of r itself introduces the lineage S_r, followed by lpf(r)*r, etc., if A280864 is a permutation of natural numbers. %C A372514 Conjecture: there are no zeros in this sequence, which is equivalent to the conjecture that A280864 is a permutation of natural numbers. Minor corollary: a(127) > 2^18. %H A372514 Michael De Vlieger, <a href="/A372514/b372514.txt">Table of n, a(n) for n = 0..478</a> %H A372514 Michael De Vlieger, <a href="/A372514/a372514.png">Fan style binary tree showing a(n)</a>, n = 0..2047, with a color code associated with log(a(n))/log(2) for a(n) <= 262144. Terms that are either 0 or greater than 262144 appear blank. %F A372514 a(2^k) > 0 and a(2*m+1) > 0, consequences of Theorem 1 in A280864. %e A372514 Let s = A019565 and let t = A280864. %e A372514 a(0) = 1 since s(0) = 1 = t(1). %e A372514 a(1) = 2 since s(1) = 2 = t(2). %e A372514 a(2) = 4 since s(2) = 3 = t(4). %e A372514 a(3) = 5 since s(3) = 5 = t(5). %e A372514 Table relating this sequence to s and t. The last column shows Y if s(n) is divisible by the prime in the heading, otherwise ".": %e A372514 n s(n) a(n) 2357 %e A372514 ---------------------- %e A372514 0 1 1 . %e A372514 1 2 2 Y %e A372514 2 3 4 .Y %e A372514 3 6 5 YY %e A372514 4 5 7 ..Y %e A372514 5 10 8 Y.Y %e A372514 6 15 17 .YY %e A372514 7 30 26 YYY %e A372514 8 7 11 ...Y %e A372514 9 14 12 Y..Y %e A372514 10 21 20 .Y.Y %e A372514 11 42 37 YY.Y %e A372514 12 35 36 .YYY %e A372514 13 70 72 Y.YY %e A372514 14 105 73 .YYY %e A372514 15 210 207 YYYY %e A372514 ... %t A372514 nn = 2^13; r = s = 1; c[_] := False; %t A372514 rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; %t A372514 a = Monitor[Reap[Do[w = GCD[r, s]; k = m = r/w; %t A372514 While[Or[c[k], ! CoprimeQ[w, k] ], k += m]; Sow[k]; c[k] = True; %t A372514 s = r; r = rad[k], {i, nn}]][[-1, 1]], i]; %t A372514 Array[FirstPosition[a, Times @@ Prime@ Position[Reverse[IntegerDigits[#, 2]], 1][[All, 1]] ][[1]] &, 61, 0] %Y A372514 Cf. A005117, A019565, A280864, A372697. %K A372514 nonn %O A372514 0,2 %A A372514 _Michael De Vlieger_, Jul 29 2024