This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372523 #59 May 26 2024 15:55:55 %S A372523 1,2,1,3,11,1,4,2,11,1,5,21,12,11,1,6,3,2,12,11,1,7,31,21,13,12,11,1, %T A372523 8,4,22,2,13,12,11,1,9,41,3,21,14,13,12,11,1,10,5,31,22,2,14,13,12,11, %U A372523 1,11,51,32,23,21,15,14,13,12,11,1,12,6,4,3,22,2,15,14,13,12,11,1 %N A372523 Triangle read by rows: T(n, k) is equal to n/k if k | n, else to the concatenation of A003988(n, k) = floor(n/k) and A051127(k, n) = n mod k. %H A372523 Stefano Spezia, <a href="/A372523/b372523.txt">First 150 rows of the triangle, flattened</a> %F A372523 T(n, k) = floor(n/k)*10^(1+floor(log10(n mod k))) + (n mod k) if n is not divisible by k. %F A372523 T(n, n) = 1. %F A372523 T(n, 1) = n. %F A372523 T(n, k) = 2*T(n-k, k) - T(n-2*k, k) for n >= 3*k. %F A372523 T(n, k) = [x^n] x^k*(1 + (Sum_{i=1..k-1} (i + 10^(1+floor(log10(n mod k))))*x^i) - (Sum_{i=1..k-1} i*x^(k+i)))/(1 - x^k)^2. %e A372523 The triangle begins: %e A372523 1; %e A372523 2, 1; %e A372523 3, 11, 1; %e A372523 4, 2, 11, 1; %e A372523 5, 21, 12, 11, 1; %e A372523 6, 3, 2, 12, 11, 1; %e A372523 7, 31, 21, 13, 12, 11, 1; %e A372523 ... %t A372523 T[n_,k_]:=If[Divisible[n,k],n/k,FromDigits[Join[IntegerDigits[Floor[n/k]],IntegerDigits[Mod[n,k]]]]]; Table[T[n,k],{n,12},{k,n}]//Flatten (* or *) %t A372523 T[n_,k_]:=Floor[n/k]10^IntegerLength[Mod[n,k]]+Mod[n,k]; Table[T[n,k],{n,12},{k,n}]//Flatten (* or *) %t A372523 T[n_, k_]:=SeriesCoefficient[x^k(1+Sum[(i + 10^(1+Floor[Log10[Mod[n,k]]]))*x^i, {i, k-1}] - Sum[i*x^(k+i), {i, k-1}])/(1-x^k)^2, {x, 0, n}]; Table[T[n, k], {n, 12}, {k, n}]//Flatten %Y A372523 Cf. A003988, A004216, A051127, A055642. %Y A372523 Cf. A000012 (right diagonal), A000027 (1st column). %Y A372523 Cf. A048158, A051126, A051127, A234575. %K A372523 nonn,base,easy,look,tabl %O A372523 1,2 %A A372523 _Stefano Spezia_, May 04 2024