This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372528 #15 May 05 2024 19:57:22 %S A372528 1,1,3,8,22,65,200,637,2090,7021,24041,83611,294511,1048376,3765080, %T A372528 13623820,49617990,181733222,668947823,2473277248,9180700787, %U A372528 34200489886,127819746470,479124333321,1800838945043,6785517883825,25626477179000,96988079848223,367794448974300,1397301289617580 %N A372528 Expansion of g.f. A(x) satisfying A( -x * A( x - x^2 ) ) = -x^2. %H A372528 Paul D. Hanna, <a href="/A372528/b372528.txt">Table of n, a(n) for n = 1..520</a> %F A372528 G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with its series reversion R(x), satisfy the following formulas. %F A372528 (1) A( -x*A(x - x^2) ) = -x^2. %F A372528 (2) A(x - x^2) = R(-x^2)/(-x). %F A372528 (3) (R(x) - R(-x))^2 + 2*(R(x) + R(-x)) = 0. %F A372528 (4) R(x) = R(-x) - 1 + sqrt(1 - 4*R(-x)). %F A372528 (5) A(x) = -A( x - 1 + sqrt(1 - 4*x) ). %F A372528 (6) A(x) = -A(x - 2*C(x)) where C(x) = -C(x - 2*C(x)) is a g.f. of the Catalan numbers (A000108). %F A372528 (7) A( -A(x)*C(x) ) = -C(x)^2 where C(x) = (1 - sqrt(1 - 4*x))/2 is a g.f. of the Catalan numbers (A000108). %e A372528 G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 22*x^5 + 65*x^6 + 200*x^7 + 637*x^8 + 2090*x^9 + 7021*x^10 + 24041*x^11 + 83611*x^12 + ... %e A372528 RELATED SERIES. %e A372528 Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then %e A372528 R(x) = x - x^2 - x^3 + 2*x^4 + 4*x^5 - 9*x^6 - 18*x^7 + 44*x^8 + 91*x^9 - 234*x^10 - 496*x^11 + 1318*x^12 + ... %e A372528 where A(x - x^2) = R(-x^2)/(-x). %e A372528 Also, the bisections B1 and B2 of R(x) are %e A372528 B1 = (R(x) - R(-x))/2 = x - x^3 + 4*x^5 - 18*x^7 + 91*x^9 - 496*x^11 + 2839*x^13 - 16836*x^15 + 102545*x^17 - 637733*x^19 + ... %e A372528 B2 = (R(x) + R(-x))/2 = -x^2 + 2*x^4 - 9*x^6 + 44*x^8 - 234*x^10 + 1318*x^12 - 7722*x^14 + 46594*x^16 - 287611*x^18 + 1807720*x^20 + ... %e A372528 and satisfy B1^2 + B2 = 0 and A(-x*B1) = -B1^2. %e A372528 SPECIFIC VALUES. %e A372528 A( -A(2/9) / 3 ) = -1/9 where %e A372528 A(2/9) = 0.3655811677545134614272600644874552972994602150418984... %e A372528 A( -A(3/16) / 4 ) = -1/16 where %e A372528 A(3/16) = 0.2645434685642398513217156896362957133168212272114320... %e A372528 A( -A(4/25) / 5 ) = -1/25 where %e A372528 A(4/25) = 0.2076566162630115730635446744577181791494166261819659... %e A372528 A( -A(5/36) / 6 ) = -1/36 where %e A372528 A(5/36) = 0.1711609712404346976409014231532840797963445277760447... %o A372528 (PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0); %o A372528 A[#A] = polcoeff( x^2 + subst(Ser(A), x, -x*subst(Ser(A), x, x - x^2) ), #A)); A[n+1]} %o A372528 for(n=1, 35, print1(a(n), ", ")) %Y A372528 Cf. A371708, A000108. %K A372528 nonn %O A372528 1,3 %A A372528 _Paul D. Hanna_, May 05 2024