This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372530 #26 Apr 13 2025 19:56:53 %S A372530 1,1,3,9,33,125,501,2065,8739,37685,165107,732681,3286679,14878885, %T A372530 67889851,311896993,1441536321,6698017445,31269529601,146601334841, %U A372530 689945263873,3258334336349,15436401872405,73341269533009,349381321611505,1668434132560765,7985390073708765 %N A372530 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x)) ). %C A372530 Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108): %C A372530 (1) C(x)^2 = C( x*C(x)*(1 + C(x)) ), %C A372530 (2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ), %C A372530 (3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ), %C A372530 (4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0. %H A372530 Paul D. Hanna, <a href="/A372530/b372530.txt">Table of n, a(n) for n = 1..520</a> %F A372530 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A372530 (1) A(x)^2 = A( x*A(x)/(1 - A(x)) ). %F A372530 (2) A(x)^4 = A( x*A(x)^3/((1 - A(x))*(1 - A(x)^2)) ). %F A372530 (3) A(x)^8 = A( x*A(x)^7/((1 - A(x))*(1 - A(x)^2)*(1 - A(x)^4)) ). %F A372530 (4) A(x)^(2^n) = A( x*A(x)^(2^n-1)/Product_{k=0..n-1} (1 - A(x)^(2^k)) ) for n > 0. %F A372530 (5) A(x) = x / Product_{n>=0} (1 - A(x)^(2^n)). %F A372530 (6) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n))^(n+1). - _Paul D. Hanna_, Jun 26 2024 %F A372530 (7) A(x) = Series_Reversion( x * Product_{n>=0} (1 - x^(2^n)) ). %F A372530 (8) x = Sum_{n>=1} (-1)^A010060(n-1) * A(x)^n, where A010060 is the Thue-Morse sequence. %F A372530 The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 2^n * A(r)^(2^n)/(1 - A(r)^(2^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(2^n)), where r = 0.19736158352631556925015099049581233030702919287488... and A(r) = 0.37298513723316144189484491702105095014110332846051... %F A372530 Given r and A(r) above, A(r) also satisfies 1 = Sum_{n>=0} (n+1)*2^n * A(r)^(2^n)/(1 + A(r)^(2^n)). - _Paul D. Hanna_, Jun 26 2024 %e A372530 G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 33*x^5 + 125*x^6 + 501*x^7 + 2065*x^8 + 8739*x^9 + 37685*x^10 + 165107*x^11 + 732681*x^12 + ... %e A372530 where A( x*A(x)/(1 - A(x)) ) = A(x)^2. %e A372530 RELATED SERIES. %e A372530 Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then %e A372530 R(x) = x * Product_{n>=0} (1 - x^(2^n)) = x - x^2 - x^3 + x^4 - x^5 + x^6 + x^7 - x^8 - x^9 + x^10 + x^11 - x^12 + x^13 - x^14 - x^15 + x^16 + ... + (-1)^A010060(n-1) * x^n + ... %e A372530 thus, %e A372530 x = A(x) * (1 - A(x)) * (1 - A(x)^2) * (1 - A(x)^4) * (1 - A(x)^8) * (1 - A(x)^16) * ... * (1 - A(x)^(2^n)) * ... %e A372530 SPECIFIC VALUES. %e A372530 A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(2^n)) = 0.195062471888103139123433255203480726664398592... %e A372530 A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(2^n)) = 0.175091932719784804433277263483089433821043251... %e A372530 A(1/6) = 0.2285942310240955503097133963953487564542629539800372181... %e A372530 A(1/7) = 0.1803372891149269875688065840927292319030238580575714990... %e A372530 A(1/8) = 0.1506715662175837437127190414569072051853697889895576799... %e A372530 A(1/6)^2 = A(t) at t = (1/6)*A(1/6)/(1 - A(1/6)) = 0.0493891023845... %e A372530 A(1/7)^2 = A(t) at t = (1/7)*A(1/7)/(1 - A(1/7)) = 0.0314305744685... %o A372530 (PARI) {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0); F=Ser(A); %o A372530 A[#A] = polcoeff( subst(F,x, x*F/(1 - F) ) - F^2, #A) ); H=A; A[n+1]} %o A372530 for(n=1,30, print1(a(n),", ")) %Y A372530 Cf. A373312, A373313, A372531, A371713, A371709, A010060. %K A372530 nonn %O A372530 1,3 %A A372530 _Paul D. Hanna_, May 13 2024