A372539 Numbers k such that the number of ones minus the number of zeros in the binary expansion of the k-th prime number is -1.
7, 19, 21, 25, 56, 57, 59, 60, 62, 68, 71, 77, 79, 87, 175, 177, 179, 180, 186, 188, 189, 192, 193, 195, 196, 197, 204, 210, 212, 216, 218, 243, 244, 248, 254, 262, 263, 265, 279, 567, 572, 576, 577, 583, 592, 598, 599, 600, 602, 603, 605, 606, 610, 613, 616
Offset: 1
Examples
The binary expansion of 17 is (1,0,0,0,1) with ones minus zeros 2 - 3 = -1, and 17 is the 7th prime, 7 is in the sequence. The primes A000040(a(n)) together with their binary expansions and binary indices begin: 17: 10001 ~ {1,5} 67: 1000011 ~ {1,2,7} 73: 1001001 ~ {1,4,7} 97: 1100001 ~ {1,6,7} 263: 100000111 ~ {1,2,3,9} 269: 100001101 ~ {1,3,4,9} 277: 100010101 ~ {1,3,5,9} 281: 100011001 ~ {1,4,5,9} 293: 100100101 ~ {1,3,6,9} 337: 101010001 ~ {1,5,7,9} 353: 101100001 ~ {1,6,7,9} 389: 110000101 ~ {1,3,8,9} 401: 110010001 ~ {1,5,8,9} 449: 111000001 ~ {1,7,8,9} 1039: 10000001111 ~ {1,2,3,4,11} 1051: 10000011011 ~ {1,2,4,5,11} 1063: 10000100111 ~ {1,2,3,6,11} 1069: 10000101101 ~ {1,3,4,6,11} 1109: 10001010101 ~ {1,3,5,7,11} 1123: 10001100011 ~ {1,2,6,7,11} 1129: 10001101001 ~ {1,4,6,7,11} 1163: 10010001011 ~ {1,2,4,8,11}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],DigitCount[Prime[#],2,1]-DigitCount[Prime[#],2,0]==-1&]