A372540 Least k such that the k-th squarefree number has binary expansion of length n. Index of the smallest squarefree number >= 2^n.
1, 2, 4, 7, 12, 21, 40, 79, 158, 315, 625, 1246, 2492, 4983, 9963, 19921, 39845, 79689, 159361, 318726, 637462, 1274919, 2549835, 5099651, 10199302, 20398665, 40797328, 81594627, 163189198, 326378285, 652756723, 1305513584, 2611027095, 5222054082, 10444108052
Offset: 0
Examples
The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin: 1: 1 ~ {1} 2: 10 ~ {2} 5: 101 ~ {1,3} 10: 1010 ~ {2,4} 17: 10001 ~ {1,5} 33: 100001 ~ {1,6} 65: 1000001 ~ {1,7} 129: 10000001 ~ {1,8} 257: 100000001 ~ {1,9} 514: 1000000010 ~ {2,10} 1027: 10000000011 ~ {1,2,11} 2049: 100000000001 ~ {1,12} 4097: 1000000000001 ~ {1,13} 8193: 10000000000001 ~ {1,14} 16385: 100000000000001 ~ {1,15} 32770: 1000000000000010 ~ {2,16} 65537: 10000000000000001 ~ {1,17} 131073: 100000000000000001 ~ {1,18}
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..73
Crossrefs
Programs
-
Mathematica
nn=1000; ssnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&]; dcs=IntegerLength[Select[Range[nn],SquareFreeQ],2]; Table[Position[dcs,i][[1,1]],{i,ssnm[dcs]}]
-
Python
from itertools import count from math import isqrt from sympy import mobius, factorint def A372540(n): return next(sum(mobius(a)*(k//a**2) for a in range(1, isqrt(k)+1)) for k in count(1<
Chai Wah Wu, May 12 2024
Formula
a(n) = A143658(n)+1 for n > 1. - Chai Wah Wu, Aug 26 2024
Extensions
a(24)-a(34) from Chai Wah Wu, May 12 2024