This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372541 #24 May 11 2024 13:00:09 %S A372541 1,3,6,11,20,60,78,157,314,624,1245,3736,4982,9962,19920,39844,79688, %T A372541 239046,318725,956194,1912371,2549834,5099650,15298984,20398664, %U A372541 40797327,81594626,163189197,326378284,979135127,1305513583,2611027094,5222054081,10444108051 %N A372541 Least k such that the k-th squarefree number has exactly n ones in its binary expansion. %H A372541 Chai Wah Wu, <a href="/A372541/b372541.txt">Table of n, a(n) for n = 0..56</a> %H A372541 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamming_weight">Hamming weight</a>. %e A372541 The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin: %e A372541 1: 1 ~ {1} %e A372541 3: 11 ~ {1,2} %e A372541 7: 111 ~ {1,2,3} %e A372541 15: 1111 ~ {1,2,3,4} %e A372541 31: 11111 ~ {1,2,3,4,5} %e A372541 95: 1011111 ~ {1,2,3,4,5,7} %e A372541 127: 1111111 ~ {1,2,3,4,5,6,7} %e A372541 255: 11111111 ~ {1,2,3,4,5,6,7,8} %e A372541 511: 111111111 ~ {1,2,3,4,5,6,7,8,9} %e A372541 1023: 1111111111 ~ {1,2,3,4,5,6,7,8,9,10} %e A372541 2047: 11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11} %e A372541 6143: 1011111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,13} %e A372541 8191: 1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13} %e A372541 16383: 11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14} %e A372541 32767: 111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} %e A372541 65535: 1111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} %e A372541 131071: 11111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} %t A372541 nn=10000; %t A372541 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; %t A372541 dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,1]; %t A372541 Table[Position[dcs,i][[1,1]],{i,spnm[dcs-1]}] %o A372541 (Python) %o A372541 from math import isqrt %o A372541 from itertools import count %o A372541 from sympy import factorint, mobius %o A372541 from sympy.utilities.iterables import multiset_permutations %o A372541 def A372541(n): %o A372541 if n==0: return 1 %o A372541 for l in count(n): %o A372541 m = 1<<l %o A372541 for d in multiset_permutations('0'*(l-n)+'1'*n): %o A372541 k = m+int('0'+''.join(d),2) %o A372541 if max(factorint(k).values(),default=0)==1: %o A372541 return sum(mobius(a)*(k//a**2) for a in range(1, isqrt(k)+1)) # _Chai Wah Wu_, May 10 2024 %Y A372541 Positions of firsts appearances in A372433. %Y A372541 Counting zeros instead of ones gives A372473, firsts in A372472. %Y A372541 For prime instead of squarefree we have A372517, firsts of A014499. %Y A372541 Counting bits (length) gives A372540, firsts of A372475, runs A077643. %Y A372541 A000120 counts ones in binary expansion (binary weight), zeros A080791. %Y A372541 A005117 lists squarefree numbers. %Y A372541 A030190 gives binary expansion, reversed A030308. %Y A372541 A048793 lists positions of ones in reversed binary expansion, sum A029931. %Y A372541 A145037, A097110 count ones minus zeros, for primes A372516, A177796. %Y A372541 A371571 lists positions of zeros in binary expansion, sum A359359. %Y A372541 A371572 lists positions of ones in binary expansion, sum A230877. %Y A372541 A372515 lists positions of zeros in reversed binary expansion, sum A359400. %Y A372541 Cf. A023416, A049093, A049094, A069010, A070939, A071403, A211997, A280296, A372474. %K A372541 nonn,base %O A372541 0,2 %A A372541 _Gus Wiseman_, May 09 2024 %E A372541 a(23)-a(33) from _Chai Wah Wu_, May 10 2024