This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372550 #9 May 05 2024 20:00:17 %S A372550 15919,15923,24113,24517,30509,34883,34897,36107,49201,52747,56249, %T A372550 64927,64937,66107,66109,66191,67247,67261,67271,67273,68147,70639, %U A372550 70657,70663,70667,70687,70709,70717,71549,75797,78317,78929,79979,81083,81101,83701,88301,94117,94603,94613,96497,97609 %N A372550 Primes such that the next 10 prime gaps are all distinct. %H A372550 Robert Israel, <a href="/A372550/b372550.txt">Table of n, a(n) for n = 1..10000</a> %e A372550 a(3) = 24113 is a term because it is prime, the next 10 primes are 24121, 24133, 24137, 24151, 24169, 24179, 24181, 24197, 24203, 24223, and the gaps between these 11 primes are 8, 12, 4, 14, 18, 10, 2, 16, 6, 20 which are all distinct. %p A372550 P:= [seq(ithprime(i),i=1..11)]: %p A372550 R:= NULL: count:= 0: %p A372550 while count < 100 do %p A372550 P:= [op(P[2..-1]),nextprime(P[-1])]; %p A372550 if nops(convert(P[2..-1]-P[1..-2],set))=10 then %p A372550 count:= count+1; R:= R,P[1]; %p A372550 fi %p A372550 od: %p A372550 R; %t A372550 s = {}; %t A372550 Do[If[10 == Length[Union[Differences[Prime[Range[k, k + 10]]]]], AppendTo[s, %t A372550 Prime[k]]], {k,, 10000}]; s %Y A372550 Cf. A079007. %K A372550 nonn %O A372550 1,1 %A A372550 _Zak Seidov_ and _Robert Israel_, May 05 2024