This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372562 #17 May 21 2024 13:44:15 %S A372562 -1,1,-1,3,7,-3,11,5,-1,-3,1,71,7,23,-9,21,13,93,-11,-73,-9,5,85,-19, %T A372562 645,-65,-49,-15,49,-1,189,5,-465,-119,-217,-15,39,463,-11,495,-127, %U A372562 519,-209,-193,-17,23,95,1151,-29,-273,-103,-2967,-207,-217,-27,-5,149,357,9839,-119,-255,-231,-1551,-435,-721,-25 %N A372562 Square array A(n, k) = A246278(1+n, k) - 2*A246278(n, k), read by falling antidiagonals, where A246278 is the prime shift array. %C A372562 For all k >= 1, A(1+A336836(2*k), k) < 0, and it is the topmost negative number of the column k. %C A372562 In those columns k where 2k is in A104210, 6, 12, 18, 24, ..., there is present a "prime thread" of successive primes (see the example). %H A372562 Antti Karttunen, <a href="/A372562/b372562.txt">Table of n, a(n) for n = 1..11325; the first 150 antidiagonals, flattened</a> %H A372562 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A372562 A(n,k) = A252748(A246278(n,k)). %e A372562 The top left corner of the array: %e A372562 k= 1 2 3 4 5 6 7 8 9 10 11 12 %e A372562 2k= 2 4 6 8 10 12 14 16 18 20 22 24 %e A372562 --+------------------------------------------------------------------------------- %e A372562 1 | -1, 1, 3, 11, 1, 21, 5, 49, 39, 23, -5, 87, %e A372562 2 | -1, 7, 5, 71, 13, 85, -1, 463, 95, 149, 7, 605, %e A372562 3 | -3, -1, 7, 93, -19, 189, -11, 1151, 357, 87, -37, 2023, %e A372562 4 | -3, 23, -11, 645, 5, 495, -29, 9839, 165, 783, -13, 9757, %e A372562 5 | -9, -73, -65, -465, -127, -273, -119, -721, 39, -903, -129, 2743, %e A372562 6 | -9, -49, -119, 519, -103, -255, -105, 26399, -1377, 225, -227, 18649, %e A372562 7 | -15, -217, -209, -2967, -231, -2679, -397, -36721, -2223, -2825, -351, -28937, %e A372562 ... %e A372562 Terms of column 9: 39 (3*13), 95 (5*19), 357 (3*7*17), 165 (3*5*11), 39 (3*13), -1377 (- 3^4 * 17), -2223 (- 3^2 * 13 * 19), ..., show an ascending "prime thread" (3, 5, 7, 11, 13, 17, 19, ...) that is mentioned in comments. %o A372562 (PARI) %o A372562 up_to = 66; %o A372562 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A372562 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A372562 A252748(n) = (A003961(n) - (2*n)); %o A372562 A372562sq(row,col) = A252748(A246278sq(row,col)); %o A372562 A372562list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372562sq(col,(a-(col-1))))); (v); }; %o A372562 v372562 = A372562list(up_to); %o A372562 A372562(n) = v372562[n]; %Y A372562 Cf. A003961, A104210, A246278, A252748, A336836. %Y A372562 Cf. A062234 (column 1 when values are negated). %Y A372562 Cf. also A252750 (same terms in irregular triangle), A372563. %Y A372562 See also conjecture 1 in A349753. %K A372562 sign,tabl %O A372562 1,4 %A A372562 _Antti Karttunen_, May 21 2024