cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372565 a(n) is the greatest common divisor of n, sigma(n) and A003961(n), where A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).

This page as a plain text file.
%I A372565 #8 May 19 2024 14:02:24
%S A372565 1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,
%T A372565 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,
%U A372565 1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1
%N A372565 a(n) is the greatest common divisor of n, sigma(n) and A003961(n), where A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).
%H A372565 Antti Karttunen, <a href="/A372565/b372565.txt">Table of n, a(n) for n = 1..65537</a>
%H A372565 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A372565 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%o A372565 (PARI)
%o A372565 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A372565 A372565(n) = gcd([n, sigma(n), A003961(n)]);
%Y A372565 Cf. A000203, A003961, A372566 (positions of terms > 1).
%Y A372565 Greatest common divisor of any two of the following: A009194, A322361, A342671.
%K A372565 nonn,easy
%O A372565 1,6
%A A372565 _Antti Karttunen_, May 19 2024