This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372565 #8 May 19 2024 14:02:24 %S A372565 1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1, %T A372565 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1, %U A372565 1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1 %N A372565 a(n) is the greatest common divisor of n, sigma(n) and A003961(n), where A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1). %H A372565 Antti Karttunen, <a href="/A372565/b372565.txt">Table of n, a(n) for n = 1..65537</a> %H A372565 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A372565 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %o A372565 (PARI) %o A372565 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A372565 A372565(n) = gcd([n, sigma(n), A003961(n)]); %Y A372565 Cf. A000203, A003961, A372566 (positions of terms > 1). %Y A372565 Greatest common divisor of any two of the following: A009194, A322361, A342671. %K A372565 nonn,easy %O A372565 1,6 %A A372565 _Antti Karttunen_, May 19 2024