This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372576 #8 May 25 2024 10:42:41 %S A372576 0,1,2,2,6,3,30,3,4,7,210,4,150,31,8,4,150,5,30,8,32,211,210,5,12,151, %T A372576 6,32,150,9,30,5,212,151,36,6,210,31,152,9,210,33,330,212,10,211,150, %U A372576 6,60,13,152,152,210,7,216,33,32,151,330,10,30,31,34,6,156,213,30,152,212,37,210,7,150,211,14,32,240 %N A372576 a(n) = A276085(n) mod 360, where A276085 is the primorial base log-function. %C A372576 Completely additive modulo 360. %C A372576 On average, every third term is a multiple of 4. See A369001. %H A372576 Antti Karttunen, <a href="/A372576/b372576.txt">Table of n, a(n) for n = 1..16384</a> %H A372576 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %o A372576 (PARI) %o A372576 A002110(n) = prod(i=1,n,prime(i)); %o A372576 A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; %o A372576 A372576(n) = (A276085(n)%360); %Y A372576 Cf. A002110, A276085. %Y A372576 Cf. A003159 (positions of even terms), A036554 (of odd terms), A035263, A096268 (parity of terms), A369001, A369002 (positions of multiples of 4). %K A372576 nonn %O A372576 1,3 %A A372576 _Antti Karttunen_, May 25 2024