This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372586 #8 May 15 2024 16:29:08 %S A372586 1,2,3,4,5,8,9,12,15,16,17,20,21,29,32,36,42,43,45,46,47,48,51,53,54, %T A372586 55,59,60,61,63,64,65,66,67,68,71,73,78,79,80,81,84,89,91,93,94,95,97, %U A372586 99,101,105,110,111,113,114,115,116,118,119,121,122,125,127 %N A372586 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd. %C A372586 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372586 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372586 The even version is A372587. %F A372586 Numbers k such that A029931(k) + A056239(k) is odd. %e A372586 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: %e A372586 {1} 1 () %e A372586 {2} 2 (1) %e A372586 {1,2} 3 (2) %e A372586 {3} 4 (1,1) %e A372586 {1,3} 5 (3) %e A372586 {4} 8 (1,1,1) %e A372586 {1,4} 9 (2,2) %e A372586 {3,4} 12 (2,1,1) %e A372586 {1,2,3,4} 15 (3,2) %e A372586 {5} 16 (1,1,1,1) %e A372586 {1,5} 17 (7) %e A372586 {3,5} 20 (3,1,1) %e A372586 {1,3,5} 21 (4,2) %e A372586 {1,3,4,5} 29 (10) %e A372586 {6} 32 (1,1,1,1,1) %e A372586 {3,6} 36 (2,2,1,1) %e A372586 {2,4,6} 42 (4,2,1) %e A372586 {1,2,4,6} 43 (14) %e A372586 {1,3,4,6} 45 (3,2,2) %e A372586 {2,3,4,6} 46 (9,1) %e A372586 {1,2,3,4,6} 47 (15) %e A372586 {5,6} 48 (2,1,1,1,1) %t A372586 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372586 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372586 Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&] %Y A372586 Positions of odd terms in A372428, zeros A372427. %Y A372586 For minimum (A372437) we have A372439, complement A372440. %Y A372586 For length (A372441, zeros A071814) we have A372590, complement A372591. %Y A372586 For maximum (A372442, zeros A372436) we have A372588, complement A372589. %Y A372586 The complement is A372587. %Y A372586 For just binary indices: %Y A372586 - length: A000069, complement A001969 %Y A372586 - sum: A158705, complement A158704 %Y A372586 - minimum: A003159, complement A036554 %Y A372586 - maximum: A053738, complement A053754 %Y A372586 For just prime indices: %Y A372586 - length: A026424 (count A027193), complement A028260 (count A027187) %Y A372586 - sum: A300063 (count A058695), complement A300061 (count A058696) %Y A372586 - minimum: A340932 (count A026804), complement A340933 (count A026805) %Y A372586 - maximum: A244991 (count A027193), complement A244990 (count A027187) %Y A372586 A005408 lists odd numbers. %Y A372586 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372586 A029837 gives greatest binary index, least A001511. %Y A372586 A031368 lists odd-indexed primes, even A031215. %Y A372586 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372586 A061395 gives greatest prime index, least A055396. %Y A372586 A070939 gives length of binary expansion. %Y A372586 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372586 Cf. A000720, A066208, A160786, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438. %K A372586 nonn %O A372586 1,2 %A A372586 _Gus Wiseman_, May 14 2024