This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372587 #5 May 15 2024 16:29:02 %S A372587 6,7,10,11,13,14,18,19,22,23,24,25,26,27,28,30,31,33,34,35,37,38,39, %T A372587 40,41,44,49,50,52,56,57,58,62,69,70,72,74,75,76,77,82,83,85,86,87,88, %U A372587 90,92,96,98,100,102,103,104,106,107,108,109,112,117,120,123 %N A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even. %C A372587 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372587 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372587 The odd version is A372586. %F A372587 Numbers k such that A029931(k) + A056239(k) is even. %e A372587 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: %e A372587 {2,3} 6 (2,1) %e A372587 {1,2,3} 7 (4) %e A372587 {2,4} 10 (3,1) %e A372587 {1,2,4} 11 (5) %e A372587 {1,3,4} 13 (6) %e A372587 {2,3,4} 14 (4,1) %e A372587 {2,5} 18 (2,2,1) %e A372587 {1,2,5} 19 (8) %e A372587 {2,3,5} 22 (5,1) %e A372587 {1,2,3,5} 23 (9) %e A372587 {4,5} 24 (2,1,1,1) %e A372587 {1,4,5} 25 (3,3) %e A372587 {2,4,5} 26 (6,1) %e A372587 {1,2,4,5} 27 (2,2,2) %e A372587 {3,4,5} 28 (4,1,1) %e A372587 {2,3,4,5} 30 (3,2,1) %e A372587 {1,2,3,4,5} 31 (11) %e A372587 {1,6} 33 (5,2) %e A372587 {2,6} 34 (7,1) %e A372587 {1,2,6} 35 (4,3) %e A372587 {1,3,6} 37 (12) %e A372587 {2,3,6} 38 (8,1) %t A372587 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372587 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A372587 Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&] %Y A372587 Positions of even terms in A372428, zeros A372427. %Y A372587 For minimum (A372437) we have A372440, complement A372439. %Y A372587 For length (A372441, zeros A071814) we have A372591, complement A372590. %Y A372587 For maximum (A372442, zeros A372436) we have A372589, complement A372588. %Y A372587 The complement is A372586. %Y A372587 For just binary indices: %Y A372587 - length: A001969, complement A000069 %Y A372587 - sum: A158704, complement A158705 %Y A372587 - minimum: A036554, complement A003159 %Y A372587 - maximum: A053754, complement A053738 %Y A372587 For just prime indices: %Y A372587 - length: A026424 A028260 (count A027187), complement (count A027193) %Y A372587 - sum: A300061 (count A058696), complement A300063 (count A058695) %Y A372587 - minimum: A340933 (count A026805), complement A340932 (count A026804) %Y A372587 - maximum: A244990 (count A027187), complement A244991 (count A027193) %Y A372587 A005408 lists odd numbers. %Y A372587 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372587 A029837 gives greatest binary index, least A001511. %Y A372587 A031368 lists odd-indexed primes, even A031215. %Y A372587 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372587 A061395 gives greatest prime index, least A055396. %Y A372587 A070939 gives length of binary expansion. %Y A372587 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372587 Cf. A000720, A066207, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438. %K A372587 nonn %O A372587 1,1 %A A372587 _Gus Wiseman_, May 14 2024