This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372588 #6 May 15 2024 16:28:59 %S A372588 2,6,7,8,10,11,15,18,19,21,24,26,27,28,29,32,33,34,40,41,44,45,46,47, %T A372588 50,51,55,59,60,62,65,70,71,72,74,76,78,79,81,84,86,87,89,91,95,96,98, %U A372588 101,104,105,106,107,108,111,112,113,114,116,117,122,126,128 %N A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd. %C A372588 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372588 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372588 The even version is A372589. %F A372588 Numbers k such that A070939(k) + A061395(k) is odd. %e A372588 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: %e A372588 {2} 2 (1) %e A372588 {2,3} 6 (2,1) %e A372588 {1,2,3} 7 (4) %e A372588 {4} 8 (1,1,1) %e A372588 {2,4} 10 (3,1) %e A372588 {1,2,4} 11 (5) %e A372588 {1,2,3,4} 15 (3,2) %e A372588 {2,5} 18 (2,2,1) %e A372588 {1,2,5} 19 (8) %e A372588 {1,3,5} 21 (4,2) %e A372588 {4,5} 24 (2,1,1,1) %e A372588 {2,4,5} 26 (6,1) %e A372588 {1,2,4,5} 27 (2,2,2) %e A372588 {3,4,5} 28 (4,1,1) %e A372588 {1,3,4,5} 29 (10) %e A372588 {6} 32 (1,1,1,1,1) %e A372588 {1,6} 33 (5,2) %e A372588 {2,6} 34 (7,1) %e A372588 {4,6} 40 (3,1,1,1) %e A372588 {1,4,6} 41 (13) %e A372588 {3,4,6} 44 (5,1,1) %e A372588 {1,3,4,6} 45 (3,2,2) %t A372588 Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&] %Y A372588 For sum (A372428, zeros A372427) we have A372586. %Y A372588 For minimum (A372437) we have A372439, complement A372440. %Y A372588 For length (A372441, zeros A071814) we have A372590, complement A372591. %Y A372588 Positions of odd terms in A372442, zeros A372436. %Y A372588 The complement is A372589. %Y A372588 For just binary indices: %Y A372588 - length: A000069, complement A001969 %Y A372588 - sum: A158705, complement A158704 %Y A372588 - minimum: A003159, complement A036554 %Y A372588 - maximum: A053738, complement A053754 %Y A372588 For just prime indices: %Y A372588 - length: A026424 (count A027193), complement A028260 (count A027187) %Y A372588 - sum: A300063 (count A058695), complement A300061 (count A058696) %Y A372588 - minimum: A340932 (count A026804), complement A340933 (count A026805) %Y A372588 - maximum: A244991 (count A027193), complement A244990 (count A027187) %Y A372588 A005408 lists odd numbers. %Y A372588 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372588 A029837 gives greatest binary index, least A001511. %Y A372588 A031368 lists odd-indexed primes, even A031215. %Y A372588 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372588 A061395 gives greatest prime index, least A055396. %Y A372588 A070939 gives length of binary expansion. %Y A372588 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372588 Cf. A000720, A006141, A066208, A160786, A243055, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438. %K A372588 nonn %O A372588 1,1 %A A372588 _Gus Wiseman_, May 14 2024