This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372589 #6 May 15 2024 16:28:55 %S A372589 3,4,5,9,12,13,14,16,17,20,22,23,25,30,31,35,36,37,38,39,42,43,48,49, %T A372589 52,53,54,56,57,58,61,63,64,66,67,68,69,73,75,77,80,82,83,85,88,90,92, %U A372589 93,94,97,99,100,102,103,109,110,115,118,119,120,121,123,124 %N A372589 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even. %C A372589 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372589 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372589 The odd version is A372588. %F A372589 Numbers k such that A070939(k) + A061395(k) is even. %e A372589 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: %e A372589 {1,2} 3 (2) %e A372589 {3} 4 (1,1) %e A372589 {1,3} 5 (3) %e A372589 {1,4} 9 (2,2) %e A372589 {3,4} 12 (2,1,1) %e A372589 {1,3,4} 13 (6) %e A372589 {2,3,4} 14 (4,1) %e A372589 {5} 16 (1,1,1,1) %e A372589 {1,5} 17 (7) %e A372589 {3,5} 20 (3,1,1) %e A372589 {2,3,5} 22 (5,1) %e A372589 {1,2,3,5} 23 (9) %e A372589 {1,4,5} 25 (3,3) %e A372589 {2,3,4,5} 30 (3,2,1) %e A372589 {1,2,3,4,5} 31 (11) %e A372589 {1,2,6} 35 (4,3) %e A372589 {3,6} 36 (2,2,1,1) %e A372589 {1,3,6} 37 (12) %e A372589 {2,3,6} 38 (8,1) %e A372589 {1,2,3,6} 39 (6,2) %e A372589 {2,4,6} 42 (4,2,1) %e A372589 {1,2,4,6} 43 (14) %t A372589 Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&] %Y A372589 For sum (A372428, zeros A372427) we have A372587, complement A372586. %Y A372589 For minimum (A372437) we have A372440, complement A372439. %Y A372589 For length (A372441, zeros A071814) we have A372591, complement A372590. %Y A372589 Positions of even terms in A372442, zeros A372436. %Y A372589 The complement is A372588. %Y A372589 For just binary indices: %Y A372589 - length: A001969, complement A000069 %Y A372589 - sum: A158704, complement A158705 %Y A372589 - minimum: A036554, complement A003159 %Y A372589 - maximum: A053754, complement A053738 %Y A372589 For just prime indices: %Y A372589 - length: A026424 A028260 (count A027187), complement (count A027193) %Y A372589 - sum: A300061 (count A058696), complement A300063 (count A058695) %Y A372589 - minimum: A340933 (count A026805), complement A340932 (count A026804) %Y A372589 - maximum: A244990 (count A027187), complement A244991 (count A027193) %Y A372589 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372589 A029837 gives greatest binary index, least A001511. %Y A372589 A031215 lists even-indexed primes, odd A031368. %Y A372589 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372589 A061395 gives greatest prime index, least A055396. %Y A372589 A070939 gives length of binary expansion. %Y A372589 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372589 Cf. A000720, A006141, A066207, A243055, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438. %K A372589 nonn %O A372589 1,1 %A A372589 _Gus Wiseman_, May 14 2024