cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.

This page as a plain text file.
%I A372590 #7 May 15 2024 16:28:50
%S A372590 1,3,4,5,12,14,16,17,18,20,21,22,23,25,26,27,29,30,35,38,43,45,48,49,
%T A372590 53,55,56,62,63,64,66,68,69,71,72,74,75,78,80,81,82,83,84,87,88,89,91,
%U A372590 92,93,94,99,100,101,102,104,105,108,113,114,115,116,118,120
%N A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.
%C A372590 The even version is A372591.
%e A372590 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
%e A372590         {1}   1  ()
%e A372590       {1,2}   3  (2)
%e A372590         {3}   4  (1,1)
%e A372590       {1,3}   5  (3)
%e A372590       {3,4}  12  (2,1,1)
%e A372590     {2,3,4}  14  (4,1)
%e A372590         {5}  16  (1,1,1,1)
%e A372590       {1,5}  17  (7)
%e A372590       {2,5}  18  (2,2,1)
%e A372590       {3,5}  20  (3,1,1)
%e A372590     {1,3,5}  21  (4,2)
%e A372590     {2,3,5}  22  (5,1)
%e A372590   {1,2,3,5}  23  (9)
%e A372590     {1,4,5}  25  (3,3)
%e A372590     {2,4,5}  26  (6,1)
%e A372590   {1,2,4,5}  27  (2,2,2)
%e A372590   {1,3,4,5}  29  (10)
%e A372590   {2,3,4,5}  30  (3,2,1)
%e A372590     {1,2,6}  35  (4,3)
%e A372590     {2,3,6}  38  (8,1)
%e A372590   {1,2,4,6}  43  (14)
%e A372590   {1,3,4,6}  45  (3,2,2)
%t A372590 Select[Range[100],OddQ[DigitCount[#,2,1]+PrimeOmega[#]]&]
%Y A372590 For sum (A372428, zeros A372427) we have A372586, complement A372587.
%Y A372590 For minimum (A372437) we have A372439, complement A372440.
%Y A372590 Positions of odd terms in A372441, zeros A071814.
%Y A372590 For maximum (A372442, zeros A372436) we have A372588, complement A372589.
%Y A372590 The complement is A372591.
%Y A372590 For just binary indices:
%Y A372590 - length: A000069, complement A001969
%Y A372590 - sum: A158705, complement A158704
%Y A372590 - minimum: A003159, complement A036554
%Y A372590 - maximum: A053738, complement A053754
%Y A372590 For just prime indices:
%Y A372590 - length: A026424 (count A027193), complement A028260 (count A027187)
%Y A372590 - sum: A300063 (count A058695), complement A300061 (count A058696)
%Y A372590 - minimum: A340932 (count A026804), complement A340933 (count A026805)
%Y A372590 - maximum: A244991 (count A027193), complement A244990 (count A027187)
%Y A372590 A005408 lists odd numbers.
%Y A372590 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372590 A029837 gives greatest binary index, least A001511.
%Y A372590 A031368 lists odd-indexed primes, even A031215.
%Y A372590 A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
%Y A372590 A070939 gives length of binary expansion.
%Y A372590 A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
%Y A372590 Cf. A000720, A066208, A160786, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438.
%K A372590 nonn
%O A372590 1,2
%A A372590 _Gus Wiseman_, May 14 2024