This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372590 #7 May 15 2024 16:28:50 %S A372590 1,3,4,5,12,14,16,17,18,20,21,22,23,25,26,27,29,30,35,38,43,45,48,49, %T A372590 53,55,56,62,63,64,66,68,69,71,72,74,75,78,80,81,82,83,84,87,88,89,91, %U A372590 92,93,94,99,100,101,102,104,105,108,113,114,115,116,118,120 %N A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd. %C A372590 The even version is A372591. %e A372590 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: %e A372590 {1} 1 () %e A372590 {1,2} 3 (2) %e A372590 {3} 4 (1,1) %e A372590 {1,3} 5 (3) %e A372590 {3,4} 12 (2,1,1) %e A372590 {2,3,4} 14 (4,1) %e A372590 {5} 16 (1,1,1,1) %e A372590 {1,5} 17 (7) %e A372590 {2,5} 18 (2,2,1) %e A372590 {3,5} 20 (3,1,1) %e A372590 {1,3,5} 21 (4,2) %e A372590 {2,3,5} 22 (5,1) %e A372590 {1,2,3,5} 23 (9) %e A372590 {1,4,5} 25 (3,3) %e A372590 {2,4,5} 26 (6,1) %e A372590 {1,2,4,5} 27 (2,2,2) %e A372590 {1,3,4,5} 29 (10) %e A372590 {2,3,4,5} 30 (3,2,1) %e A372590 {1,2,6} 35 (4,3) %e A372590 {2,3,6} 38 (8,1) %e A372590 {1,2,4,6} 43 (14) %e A372590 {1,3,4,6} 45 (3,2,2) %t A372590 Select[Range[100],OddQ[DigitCount[#,2,1]+PrimeOmega[#]]&] %Y A372590 For sum (A372428, zeros A372427) we have A372586, complement A372587. %Y A372590 For minimum (A372437) we have A372439, complement A372440. %Y A372590 Positions of odd terms in A372441, zeros A071814. %Y A372590 For maximum (A372442, zeros A372436) we have A372588, complement A372589. %Y A372590 The complement is A372591. %Y A372590 For just binary indices: %Y A372590 - length: A000069, complement A001969 %Y A372590 - sum: A158705, complement A158704 %Y A372590 - minimum: A003159, complement A036554 %Y A372590 - maximum: A053738, complement A053754 %Y A372590 For just prime indices: %Y A372590 - length: A026424 (count A027193), complement A028260 (count A027187) %Y A372590 - sum: A300063 (count A058695), complement A300061 (count A058696) %Y A372590 - minimum: A340932 (count A026804), complement A340933 (count A026805) %Y A372590 - maximum: A244991 (count A027193), complement A244990 (count A027187) %Y A372590 A005408 lists odd numbers. %Y A372590 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372590 A029837 gives greatest binary index, least A001511. %Y A372590 A031368 lists odd-indexed primes, even A031215. %Y A372590 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372590 A070939 gives length of binary expansion. %Y A372590 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372590 Cf. A000720, A066208, A160786, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438. %K A372590 nonn %O A372590 1,2 %A A372590 _Gus Wiseman_, May 14 2024